10 research outputs found

    Digital Health Apps in the Context of Dementia: Questionnaire Study to Assess the Likelihood of Use Among Physicians

    Get PDF
    Background: Age-related diseases such as dementia are playing an increasingly important role in global population development. Thus, prevention, diagnostics, and interventions require more accessibility, which can be realized through digital health apps. With the app on prescription, Germany made history by being the first country worldwide to offer physicians the possibility to prescribe and reimburse digital health apps as of the end of the year 2020. Objective: Considering the lack of knowledge about correlations with the likelihood of use among physicians, this study aimed to address the question of what makes the use of a digital health app by physicians more likely. Methods: We developed and validated a novel measurement tool—the Digital Health Compliance Questionnaire (DHCQ)—in an interdisciplinary collaboration of experts to assess the role of proposed factors in the likelihood of using a health app. Therefore, a web-based survey was conducted to evaluate the likelihood of using a digital app called DemPredict to screen for Alzheimer dementia. Within this survey, 5 latent dimensions (acceptance, attitude toward technology, technology experience, payment for time of use, and effort of collection), the dependent variable likelihood of use, and answers to exploratory questions were recorded and tested within directed correlations. Following a non–probability-sampling strategy, the study was completed by 331 physicians from Germany in the German language, of whom 301 (90.9%) fulfilled the study criteria (eg, being in regular contact with patients with dementia). These data were analyzed using a range of statistical methods to validate the dimensions of the DHCQ. Results: The DHCQ revealed good test theoretical measures—it showed excellent fit indexes (Tucker-Lewis index=0.98; comparative fit index=0.982; standardized root mean square residual=0.073; root mean square error of approximation=0.037), good internal consistency (Cronbach α=.83), and signs of moderate to large correlations between the DHCQ dimensions and the dependent variable. The correlations between the variables acceptance, attitude toward technology, technology experience, and payment for the time of use and the dependent variable likelihood of use ranged from 0.29 to 0.79, and the correlation between effort of the collection and likelihood of use was −0.80. In addition, we found high levels of skepticism regarding data protection, and the age of the participants was found to be negatively related to their technical experience and attitude toward technology. Conclusions: In the context of the results, increased communication between the medical and technology sectors and significantly more awareness raising are recommended to make the use of digital health apps more attractive to physicians as they can be adjusted to their everyday needs. Further research could explore the connection between areas such as adherence on the patient side and its impact on the likelihood of use by physicians

    Comparison of immunohistochemistry with PCR for assessment of ER, PR, and Ki-67 and prediction of pathological complete response in breast cancer

    Get PDF
    Background: Proliferation may predict response to neoadjuvant therapy of breast cancer and is commonly assessed by manual scoring of slides stained by immunohistochemistry (IHC) for Ki-67 similar to ER and PgR. This method carries significant intra- and inter-observer variability. Automatic scoring of Ki-67 with digital image analysis (qIHC) or assessment of MKI67 gene expression with RT-qPCR may improve diagnostic accuracy. Methods: Ki-67 IHC visual assessment was compared to the IHC nuclear tool (AperioTM) on core biopsies from a randomized neoadjuvant clinical trial. Expression of ESR1, PGR and MKI67 by RT-qPCR was performed on RNA extracted from the same formalin-fixed paraffin-embedded tissue. Concordance between the three methods (vIHC, qIHC and RT-qPCR) was assessed for all 3 markers. The potential of Ki-67 IHC and RT-qPCR to predict pathological complete response (pCR) was evaluated using ROC analysis and non-parametric Mann-Whitney Test. Results: Correlation between methods (qIHC versus RT-qPCR) was high for ER and PgR (spearman´s r = 0.82, p < 0.0001 and r = 0.86, p < 0.0001, respectively) resulting in high levels of concordance using predefined cut-offs. When comparing qIHC of ER and PgR with RT-qPCR of ESR1 and PGR the overall agreement was 96.6 and 91.4%, respectively, while overall agreement of visual IHC with RT-qPCR was slightly lower for ER/ESR1 and PR/PGR (91.2 and 92.9%, respectively). In contrast, only a moderate correlation was observed between qIHC and RT-qPCR continuous data for Ki-67/MKI67 (Spearman’s r = 0.50, p = 0.0001). Up to now no predictive cut-off for Ki-67 assessment by IHC has been established to predict response to neoadjuvant chemotherapy. Setting the desired sensitivity at 100%, specificity for the prediction of pCR (ypT0ypN0) was significantly higher for mRNA than for protein (68.9% vs. 22.2%). Moreover, the proliferation levels in patients achieving a pCR versus not differed significantly using MKI67 RNA expression (Mann-Whitney p = 0.002), but not with qIHC of Ki-67 (Mann-Whitney p = 0.097) or vIHC of Ki-67 (p = 0.131). Conclusion: Digital image analysis can successfully be implemented for assessing ER, PR and Ki-67. IHC for ER and PR reveals high concordance with RT-qPCR. However, RT-qPCR displays a broader dynamic range and higher sensitivity than IHC. Moreover, correlation between Ki-67 qIHC and RT-qPCR is only moderate and RT-qPCR with MammaTyper® outperforms qIHC in predicting pCR. Both methods yield improvements to error-prone manual scoring of Ki-67. However, RT-qPCR was significantly more specific

    A system approach for closed-loop assessment of neuro-visual function based on convolutional neural network analysis of EEG signals

    No full text
    © 2020 SPIE. We propose a generalized, modular, closed-loop system for objective assessment of human visual parameters. Our system presents periodical visual stimuli to the patient's field of view and analyses the consequent evoked brain potentials elicited in the occipital lobe and recorded through EEG. The analysis of the monitored EEG data is performed in an end-to-end fashion by a convolutional neural network (CNN). We propose a novel CNN architecture for EEG signal analysis that can be trained utilizing the benefits of multi-task learning. The closedloop attribute of our system allows for a real-time adaptation of the subsequent stimuli to further examine a potentially damaged area or increase the granularity of the exploration. Interchangeability is provided in terms of software modules, stimulus type, visual hardware, EEG acquisition device and EEG electrodes. Initially, the system is designed to monitor visual field loss originating from glaucoma or damage to the optic nerve using a virtual reality (VR) headset for the stimuli presentation. The modular architecture of our system paves the way for the assessment and monitoring of other neuro-visual functions
    corecore