47 research outputs found

    Immune Cell Activation in the Cerebrospinal Fluid of Patients With Parkinson's Disease

    Get PDF
    Background: Parkinson's disease (PD) is a common neurodegenerative disorder. The contribution of the immune system to its pathogenesis remains incompletely understood.Methods: In this study, we performed comprehensive immune cell profiling in the cerebrospinal fluid (CSF) and peripheral blood (PB) of PD patients. Ten PD patients were diagnosed according to brain bank criteria and underwent detailed clinical examination, magnetic resonance imaging, PB and CSF immune cell profiling by multiparameter flow cytometry, and cytokine and chemokine measurements by bead-based arrays. Thirteen healthy elderly volunteers served as control population.Results: The proportions of activated T-lymphocytes and non-classical monocytes in the CSF were increased in patients with PD compared to the control group. In accordance, we found increased levels of the pro-inflammatory cytokines IL-2, IL-6 and TNFα and of the monocyte chemoattractant protein 1 (MCP-1) in the CSF of the included PD patients.Conclusions: Our data provide novel evidence for a response of the innate and adaptive immune system in the central nervous system of patients with PD

    Quinpramine Ameliorates Rat Experimental Autoimmune Neuritis and Redistributes MHC Class II Molecules

    Get PDF
    Activation of inflammatory cells is central to the pathogenesis of autoimmune demyelinating diseases of the peripheral nervous system. The novel chimeric compound quinpramine—generated from imipramine and quinacrine—redistributes cholesterol rich membrane domains to intracellular compartments. We studied the immunological and clinical effects of quinpramine in myelin homogenate induced Lewis rat experimental autoimmune neuritis (EAN), a model system for acute human inflammatory neuropathies, such as the Guillain-Barré syndrome. EAN animals develop paresis of all limbs due to autoimmune inflammation of peripheral nerves. Quinpramine treatment ameliorated clinical disease severity of EAN and infiltration of macrophages into peripheral nerves. It reduced expression of MHC class II molecules on antigen presenting cells and antigen specific T cell proliferation both in vitro and in vivo. Quinpramine exerted its anti-proliferatory effect on antigen presenting cells, but not on responder T cells. Our data suggest that quinpramine represents a candidate pharmaceutical for inflammatory neuropathies

    Immune Cell Profiling of the Cerebrospinal Fluid Provides Pathogenetic Insights Into Inflammatory Neuropathies

    Get PDF
    Objective: Utilize immune cell profiles in the cerebrospinal fluid (CSF) to advance the understanding and potentially support the diagnosis of inflammatory neuropathies.Methods: We analyzed CSF cell flow cytometry data of patients with definite Guillain-Barré syndrome (GBS, n = 26) and chronic inflammatory demyelinating polyneuropathy (CIDP, n = 32) based on established diagnostic criteria in comparison to controls with relapsing-remitting multiple sclerosis (RRMS, n = 49) and idiopathic intracranial hypertension (IIH, n = 63).Results: Flow cytometry revealed disease-specific changes of CSF cell composition with a significant increase of NKT cells and CD8+ T cells in CIDP, NK cells in GBS, and B cells and plasma cells in MS in comparison to IIH controls. Principal component analysis demonstrated distinct CSF immune cells pattern in inflammatory neuropathies vs. RRMS. Systematic receiver operator curve (ROC) analysis identified NKT cells as the best parameter to distinguish GBS from CIDP. Composite scores combing several of the CSF parameters differentiated inflammatory neuropathies from IIH and GBS from CIDP with high confidence. Applying a novel dimension reduction technique, we observed an intra-disease heterogeneity of inflammatory neuropathies.Conclusion: Inflammatory neuropathies display disease- and subtype-specific alterations of CSF cell composition. The increase of NKT cells and CD8+ T cells in CIDP and NK cells in GBS, suggests a central role of cytotoxic cell types in inflammatory neuropathies varying between acute and chronic subtypes. Composite scores constructed from multi-dimensional CSF parameters establish potential novel diagnostic tools. Intra-disease heterogeneity suggests distinct disease mechanisms in subgroups of inflammatory neuropathies

    3D-визуализация в ультразвуковой дефектоскопии

    Get PDF
    На сегодняшний день существует множество средств визуализации ультразвуковых данных, но все они, как правило, интегрированы в дефектоскопы. Когда у нас возникает потребность извлечь данные сканирования, произвести собственную обработку, и представить в трехмерном изображении, то мы оказываемся лишенными возможности визуализации. Предложенное программное обеспечение на основе алгоритма SAFT позволяет произвести постобработку данных сканирования (А-сканов) и двумерную и трехмерную визуализацию

    Single-cell transcriptomics identifies potential cells of origin of MYC rhabdoid tumors

    Get PDF
    Rhabdoid tumors (RT) are rare and highly aggressive pediatric neoplasms. Their epigenetically-driven intertumoral heterogeneity is well described; however, the cellular origin of RT remains an enigma. Here, we establish and characterize different genetically engineered mouse models driven under the control of distinct promoters and being active in early progenitor cell types with diverse embryonic onsets. From all models only Sox2-positive progenitor cells give rise to murine RT. Using single-cell analyses, we identify distinct cells of origin for the SHH and MYC subgroups of RT, rooting in early stages of embryogenesis. Intra- and extracranial MYC tumors harbor common genetic programs and potentially originate from fetal primordial germ cells (PGCs). Using PGC specific Smarcb1 knockout mouse models we validate that MYC RT originate from these progenitor cells. We uncover an epigenetic imbalance in MYC tumors compared to PGCs being sustained by epigenetically-driven subpopulations. Importantly, treatments with the DNA demethylating agent decitabine successfully impair tumor growth in vitro and in vivo. In summary, our work sheds light on the origin of RT and supports the clinical relevance of DNA methyltransferase inhibitors against this disease

    Erythropoietin Ameliorates Rat Experimental Autoimmune Neuritis by Inducing Transforming Growth Factor-Beta in Macrophages

    Get PDF
    Erythropoietin (EPO) is a pleiotropic cytokine originally identified for its role in erythropoiesis. In addition, in various preclinical models EPO exhibited protective activity against tissue injury. There is an urgent need for potent treatments of autoimmune driven disorders of the peripheral nervous system (PNS), such as the Guillain-Barré syndrome (GBS), a disabling autoimmune disease associated with relevant morbidity and mortality. To test the therapeutic potential of EPO in experimental autoimmune neuritis (EAN) - an animal model of human GBS – immunological and clinical effects were investigated in a preventive and a therapeutic paradigm. Treatment with EPO reduced clinical disease severity and if given therapeutically also shortened the recovery phase of EAN. Clinical findings were mirrored by decreased inflammation within the peripheral nerve, and myelin was well maintained in treated animals. In contrast, EPO increased the number of macrophages especially in later stages of the experimental disease phase. Furthermore, the anti-inflammatory cytokine transforming growth factor (TGF)-beta was upregulated in the treated cohorts. In vitro experiments revealed less proliferation of T cells in the presence of EPO and TGF-beta was moderately induced, while the secretion of other cytokines was almost not altered by EPO. Our data suggest that EPO revealed its beneficial properties by the induction of beneficial macrophages and the modulation of the immune system towards anti-inflammatory responses in the PNS. Further studies are warranted to elaborate the clinical usefulness of EPO for treating immune-mediated neuropathies in affected patients

    Cytotoxic corpus callosum lesion and mild CSF pleocytosis during hantavirus infection: a case report

    No full text
    A middle-aged, previously healthy male patient presented with high fever, headache, and aching limbs for 3 days. Laboratory results showed signs of acute kidney injury, elevated procalcitonin, and mild thrombocytopenia. On neurological examination, he had no focal neurological deficits, especially no meningism or visual disturbances. Cerebrospinal fluid (CSF) examination showed mild lymphocytic pleocytosis, and magnetic resonance imaging (MRI) revealed a lesion of the splenium corporis callosum. The patient received anti-infective treatment with acyclovir and ceftriaxone until laboratory results returned positive hantavirus IgM and IgG antibodies in the serum indicating an active hantavirus infection. The renal retention parameters and thrombocytopenia receded following treatment with intravenous fluids, analgesic, and antipyretic agents. MRI follow-up 10 days later showed a residual small FLAIR-positive lesion without any persistent callosal diffusion abnormality. The patient was discharged symptom-free after 8 days and had recovered fully 2 months later. The source of infection in this patient remained unclear. Cytotoxic lesions of the corpus callosum (CLCC) are secondary lesions usually with a good prognosis but require further investigation regarding their underlying etiology and should not be confounded with primary callosal lesions, such as ischemia or lymphoma
    corecore