146 research outputs found

    Toxicity of mycotoxins for the rat pulmonary macrophage in vitro.

    Get PDF
    The presence of mycotoxins in grains is well documented. Workers in grain handling occupations are commonly exposed to grain dust aerosols. Work in our laboratory has shown that T-2 toxin is highly toxic to rat alveolar macrophages in vitro, causing loss of viability, release of radiolabeled chromium, inhibition of macromolecular synthesis, inhibition of phagocytosis, and inhibition of macrophage activation. Similarly, patulin caused a significant release of radiolabeled chromium, decrease in ATP levels, significant inhibition of protein and RNA synthesis, and inhibition of phagocytosis. The data show that both T-2 toxin and patulin are highly toxic to rat alveolar macrophages in vitro. The data further suggest that the presence of these mycotoxins in airborne respirable dust might present a hazard to exposed workers

    Global QSAR models of skin sensitisers for regulatory purposes

    Get PDF
    Abstract Background The new European Regulation on chemical safety, REACH, (Registration, Evaluation, Authorisation and Restriction of CHemical substances), is in the process of being implemented. Many chemicals used in industry require additional testing to comply with the REACH regulations. At the same time EU member states are attempting to reduce the number of animals used in experiments under the 3 Rs policy, (refining, reducing, and replacing the use of animals in laboratory procedures). Computational techniques such as QSAR have the potential to offer an alternative for generating REACH data. The FP6 project CAESAR was aimed at developing QSAR models for 5 key toxicological endpoints of which skin sensitisation was one. Results This paper reports the development of two global QSAR models using two different computational approaches, which contribute to the hybrid model freely available online. Conclusions The QSAR models for assessing skin sensitisation have been developed and tested under stringent quality criteria to fulfil the principles laid down by the OECD. The final models, accessible from CAESAR website, offer a robust and reliable method of assessing skin sensitisation for regulatory use.</p

    Current challenges facing the assessment of the allergenic capacity of food allergens in animal models

    Get PDF
    Food allergy is a major health problem of increasing concern. The insufficiency of protein sources for human nutrition in a world with a growing population is also a significant problem. The introduction of new protein sources into the diet, such as newly developed innovative foods or foods produced using new technologies and production processes, insects, algae, duckweed, or agricultural products from third countries, creates the opportunity for development of new food allergies, and this in turn has driven the need to develop test methods capable of characterizing the allergenic potential of novel food proteins. There is no doubt that robust and reliable animal models for the identification and characterization of food allergens would be valuable tools for safety assessment. However, although various animal models have been proposed for this purpose, to date, none have been formally validated as predictive and none are currently suitable to test the allergenic potential of new foods. Here, the design of various animal models are reviewed, including among others considerations of species and strain, diet, route of administration, dose and formulation of the test protein, relevant controls and endpoints measured

    T-cell recognition of chemicals, protein allergens and drugs: towards the development of in vitro assays

    Get PDF
    Chemicals can elicit T-cell-mediated diseases such as allergic contact dermatitis and adverse drug reactions. Therefore, testing of chemicals, drugs and protein allergens for hazard identification and risk assessment is essential in regulatory toxicology. The seventh amendment of the EU Cosmetics Directive now prohibits the testing of cosmetic ingredients in mice, guinea pigs and other animal species to assess their sensitizing potential. In addition, the EU Chemicals Directive REACh requires the retesting of more than 30,000 chemicals for different toxicological endpoints, including sensitization, requiring vast numbers of animals. Therefore, alternative methods are urgently needed to eventually replace animal testing. Here, we summarize the outcome of an expert meeting in Rome on 7 November 2009 on the development of T-cell-based in vitro assays as tools in immunotoxicology to identify hazardous chemicals and drugs. In addition, we provide an overview of the development of the field over the last two decades

    Methyl methacrylate and respiratory sensitization: A Critical review

    Get PDF
    Methyl methacrylate (MMA) is a respiratory irritant and dermal sensitizer that has been associated with occupational asthma in a small number of case reports. Those reports have raised concern that it might be a respiratory sensitizer. To better understand that possibility, we reviewed the in silico, in chemico, in vitro, and in vivo toxicology literature, and also epidemiologic and occupational medicine reports related to the respiratory effects of MMA. Numerous in silico and in chemico studies indicate that MMA is unlikely to be a respiratory sensitizer. The few in vitro studies suggest that MMA has generally weak effects. In vivo studies have documented contact skin sensitization, nonspecific cytotoxicity, and weakly positive responses on local lymph node assay; guinea pig and mouse inhalation sensitization tests have not been performed. Cohort and cross-sectional worker studies reported irritation of eyes, nose, and upper respiratory tract associated with short-term peaks exposures, but little evidence for respiratory sensitization or asthma. Nineteen case reports described asthma, laryngitis, or hypersensitivity pneumonitis in MMA-exposed workers; however, exposures were either not well described or involved mixtures containing more reactive respiratory sensitizers and irritants.The weight of evidence, both experimental and observational, argues that MMA is not a respiratory sensitizer

    Skin Sensitization Testing: The Ascendancy of Non-Animal Methods

    No full text
    A century ago, toxicology was an empirical science identifying substance hazards in surrogate mammalian models. Over several decades, these models improved, evolved to reduce animal usage, and recently have begun the process of dispensing with animals entirely. However, despite good hazard identification, the translation of hazards into adequately assessed risks to human health often has presented challenges. Unfortunately, many skin sensitizers known to produce contact allergy in humans, despite being readily identified as such in the predictive assays, continue to cause this adverse health effect. Increasing the rigour of hazard identification is inappropriate. Regulatory action has only proven effective via complete bans of individual substances. Since the problem applies to a broad range of substances and industry categories, and since generic banning of skin sensitizers would be an economic catastrophe, the solution is surprisingly simple—they should be subject to rigorous safety assessment, with the risks thereby managed accordingly. The ascendancy of non-animal methods in skin sensitization is giving unparalleled opportunities in which toxicologists, risk assessors, and regulators can work in concert to achieve a better outcome for the protection of human health than has been delivered by the in vivo methods and associated regulations that they are replacing
    • …
    corecore