17,496 research outputs found

    Transverse "resistance overshoot" in a Si/SiGe two-dimensional electron gas in the quantum Hall effect regime

    Full text link
    We investigate the peculiarities of the "overshoot" phenomena in the transverse Hall resistance R_{xy} in Si/SiGe. Near the low magnetic field end of the quantum Hall effect plateaus, when the filling factor \nu approaches an integer i, R_{xy} overshoots the normal plateau value h/ie^2. However, if magnetic field B increases further, R_{xy} decreases to its normal value. It is shown that in the investigated sample n-Si/Si_{0.7}Ge_{0.3}, overshoots exist for almost all \nu. Existence of overshoot in R_{xy} observed in different materials and for different \nu, where splitting of the adjacent Landau bands has different character, hints at the common origin of this effect. Comparison of the experimental curves R_{xy}(\nu) for \nu = 3 and \nu = 5 with and without overshoot showed that this effect exist in the whole interval between plateaus, not only in the region where R_{xy} exceeds the normal plateau value.Comment: 3 pages, 5 EPS figure

    Correlation between the Extraordinary Hall Effect and Resistivity

    Full text link
    We study the contribution of different types of scattering sources to the extraordinary Hall effect. Scattering by magnetic nano-particles embedded in normal-metal matrix, insulating impurities in magnetic matrix, surface scattering and temperature dependent scattering are experimentally tested. Our new data, as well as previously published results on a variety of materials, are fairly interpreted by a simple modification of the skew scattering model

    LORE: A Compound Object Authoring and Publishing Tool for the Australian Literature Studies Community

    Get PDF
    This paper presents LORE (Literature Object Re-use and Exchange), a light-weight tool which is designed to allow scholars and teachers of Australi-an literature to author, edit and publish compound information objects encapsulating related digital resources and bibliographic records. LORE enables users to easily create OAI-ORE-compliant compound objects, which build on the IFLA FRBR model, and also enables them to describe and publish them to an RDF repository as Named Graphs. Using the tool, literary scholars can create typed relationships between individual atomic objects using terms from a bibli-ographic ontology and can attach metadata to the compound object. This paper describes the implementation and user interface of the LORE tool, as developed within the context of an ongoing case study being conducted in collaboration with AustLit: The Australian Literature Resource, which focuses on compound objects for teaching and research within the Australian literature studies community

    Inflammatory Airway Disease of Horses - Revised Consensus Statement

    Get PDF
    The purpose of this manuscript is to revise and update the previous consensus statement on inflammatory airway disease (IAD) in horses. Since 2007, a large number of scientific articles have been published on the topic and these new findings have led to a significant evolution of our understanding of IAD

    Remarkable change of tunneling conductance in YBCO films in fields up to 32.4T

    Full text link
    We studied the tunneling density of states in YBCO films under strong currents flowing along node directions. The currents were induced by fields of up to 32.4T parallel to the film surface and perpendicular to the CuO2CuO_{2} planes. We observed a remarkable change in the tunneling conductance at high fields where the gap-like feature shifts discontinuously from 15meV to a lower bias of 11meV, becoming more pronounced as the field increases. The effect takes place in increasing fields around 9T and the transition back to the initial state occurs around 5T in decreasing fields. We argue that this transition is driven by surface currents induced by the applied magnetic field.Comment: 4 pages, 7 figure

    Vibrational Density Matrix Renormalization Group

    Full text link
    Variational approaches for the calculation of vibrational wave functions and energies are a natural route to obtain highly accurate results with controllable errors. However, the unfavorable scaling and the resulting high computational cost of standard variational approaches limit their application to small molecules with only few vibrational modes. Here, we demonstrate how the density matrix renormalization group (DMRG) can be exploited to optimize vibrational wave functions (vDMRG) expressed as matrix product states. We study the convergence of these calculations with respect to the size of the local basis of each mode, the number of renormalized block states, and the number of DMRG sweeps required. We demonstrate the high accuracy achieved by vDMRG for small molecules that were intensively studied in the literature. We then proceed to show that the complete fingerprint region of the sarcosyn-glycin dipeptide can be calculated with vDMRG.Comment: 21 pages, 5 figures, 4 table

    Tissue-Derived Stem and Progenitor Cells

    Get PDF
    The characterization and isolation of various stem cell populations, from embryonic through tissue-derived stem cells, have led a rapid growth in the field of stem cell research. These research efforts have often been interrelated as to the markers that identify a select cell population are frequently analyzed to determine their expression in cells of distinct organs/tissues. In this review, we will expand the current state of research involving select tissue-derived stem cell populations including the liver, central nervous system, and cardiac tissues as examples of the success and challenges in this field of research. Lastly, the challenges of clinical therapies will be discussed as it applies to these unique cell populations

    Do Perceptions of Ballot Secrecy Influence Turnout? Results from a Field Experiment

    Get PDF
    Although the secret ballot has long been secured as a legal matter in the United States, formal secrecy protections are not equivalent to convincing citizens that they may vote privately and without fear of reprisal. We present survey evidence that those who have not previously voted are particularly likely to voice doubts about the secrecy of the voting process. We then report results from a field experiment where we provided registered voters with information about ballot secrecy protections prior to the 2010 general election. We find that these letters increased turnout for registered citizens without records of previous turnout, but did not appear to influence the behavior of citizens who had previously voted. These results suggest that although the secret ballot is a long-standing institution in the United States, providing basic information about ballot secrecy can affect the decision to participate to an important degree.

    Orientational phase transitions in anisotropic rare-earth magnets at low temperatures

    Full text link
    Orientational phase transitions are investigated within the Heisenberg model with single-site anisotropy. The temperature dependence of the cone angle is calculated within the spin-wave theory. The role of the quantum renormalizations of anisotropy constants is discussed. A comparison with the experimental data on the cone-plane orientational transition in holmium is performed.Comment: 9 pages, LaTeX, 3 figure

    Pion gas viscosity at low temperature and density

    Get PDF
    By using Chiral Perturbation Theory and the Uehling-Uhlenbeck equation we compute the viscosity of a pion gas, in the low temperature and low density regime, in terms of the temperature, and the pion fugacity. The viscosity turns out to be proportional to the squared root of the temperature over the pion mass. Next to leading corrections are proportional to the temperature over the pion mass to the 3/2.Comment: 15 pages, 4 figures. RevTeX
    corecore