16,463 research outputs found

    A KrF-laser excited by a capacitively coupled longitudinal discharge

    Get PDF
    The performance of a KrF excimer laser, excited by a discharge produced in a quartz tube between two metallic electrodes at its end and the inner tube wall serving as a dielectric electrode, is described. The dielectric electrode is capacitively coupled to a metallic electrode surrounding the quartz tube coaxially. Laser output energies up to 0.9 mJ in pulses having a duration of 6 ns FWHM could be obtained at a driving voltage of 100 kV

    A study of the electron quenching of excimers in a KrF* laser excited by a coaxial electron beam

    Get PDF
    Measurements of the output energy, the optical pulse length and the build-up time of the laser pulse, obtained with a coaxially e-beam pumped KrF* laser, were performed varying the total gas fill pressure, the F2 content and the e-beam current from 1–5 bar, 0.1–0.8% and 13.3–26.6 kA, respectively. The maximum specific extraction energy amounts to 64 J/l. The large range of measurements, especially at low F2 concentrations, reveals the necessity to extend the kinetics of the F2 chain in the usual computer model. With the introduction of electron quenching of KrF* and ArF* by dissociative attachment the predictions are also for low F2 concentration in agreement with experiments

    Electromagnetically Induced Transparency from a Single Atom in Free Space

    Full text link
    We report an absorption spectroscopy experiment and the observation of electromagnetically induced transparency from a single trapped atom. We focus a weak and narrowband Gaussian light beam onto an optically cooled Barium ion using a high numerical aperture lens. Extinction of this beam is observed with measured values of up to 1.3 %. We demonstrate electromagnetically induced transparency of the ion by tuning a strong control beam over a two-photon resonance in a three-level lambda-type system. The probe beam extinction is inhibited by more than 75 % due to population trapping.Comment: 4 pages, 3 figure

    Splitting between Bright and Dark excitons in Transition Metal Dichalcogenide Monolayers

    Full text link
    The optical properties of transition metal dichalcogenide monolayers such as the two-dimensional semiconductors MoS2_2 and WSe2_2 are dominated by excitons, Coulomb bound electron-hole pairs. The light emission yield depends on whether the electron-hole transitions are optically allowed (bright) or forbidden (dark). By solving the Bethe Salpeter Equation on top of GWGW wave functions in density functional theory calculations, we determine the sign and amplitude of the splitting between bright and dark exciton states. We evaluate the influence of the spin-orbit coupling on the optical spectra and clearly demonstrate the strong impact of the intra-valley Coulomb exchange term on the dark-bright exciton fine structure splitting.Comment: 6 pages, 2 figure

    He Scattering from Random Adsorbates, Disordered Compact Islands and Fractal Submonolayers: Intensity Manifestations of Surface Disorder

    Full text link
    A theoretical study is made on He scattering from three fundamental classes of disordered ad-layers: (a) Translationally random adsorbates, (b) disordered compact islands and (c) fractal submonolayers. The implications of the results to experimental studies of He scattering from disordered surfaces are discussed, and a combined experimental-theoretical study is made for Ag submonolayers on Pt(111). Some of the main theoretical findings are: (1) Structural aspects of the calculated intensities from translationally random clusters were found to be strongly correlated with those of individual clusters. (2) Low intensity Bragg interference peaks appear even for scattering from very small ad-islands, and contain information on the ad-island local electron structure. (3) For fractal islands, just as for islands with a different structure, the off-specular intensity depends on the parameters of the He/Ag interaction, and does not follow a universal power law as previously proposed in the literature. In the experimental-theoretical study of Ag on Pt(111), we use first experimental He scattering data from low-coverage (single adsorbate) systems to determine an empirical He/Ag-Pt potential of good quality. Then, we carry out He scattering calculations for high coverage and compare with experiments. The conclusions are that the actual experimental phase corresponds to small compact Ag clusters of narrow size distribution, translationally disordered on the surface.Comment: 36 double-spaced pages, 10 figures; accepted by J. Chem. Phys., scheduled to appear March 8. More info available at http://www.fh.huji.ac.il/~dani

    Development of thermally stable phosphonitrile elastomers for advanced aerospace structures

    Get PDF
    Both high and low molecular weight, curable poly(fluoroalkoxy phosphazene) terpolymers were prepared. These terpolymers resulted from reaction of (Cl2PNn) polymer with alkoxides derived from CF3CH2OH and C3F7CH2OH, and an alkoxide derived from CH3CH(OH)C2H4OH. The terpolymers were crosslinked with polyisocyanates at room temperature. High molecular weight materials were converted into isocyanate prepolymers which as films underwent moisture cures at room temperature. Prepolymer solutions were stable for several days, and showed good adhesion. Also the effects of polymerization of (Cl2PN)3 were studied. Purified octachlorophosphazene, thiocyanate salts, or hydrogen chloride were employed in attempts to decrease molecular weight. Hydrogen chloride was found to be a good agent for preparation of low molecular weight poly(dichloro phosphazene)

    Modeling of time-resolved laser-induced incandescence transients for particle sizing in high-pressure spray combustion environments: a comparative study

    Get PDF
    In this study experimental single-pulse, time-resolved laser-induced incandescence (TIRE-LII) signal intensity profiles acquired during transient Diesel combustion events at high pressure were processed. Experiments were performed between 0.6 and 7MPa using a high-temperature high-pressure constant volume cell and a heavy-duty Diesel engine, respectively. Three currently available LII sub-model functions were investigated in their performance for extracting ensemble mean soot particle diameters using a least-squares fitting routine, and a "quick-fit” interpolation approach, respectively. In the calculations a particle size distribution as well as the temporal and spatial intensity profile of the heating laser was taken into account. For the poorly characterized sample environments of this work, some deficiencies in these state-of-the-art data evaluation procedures were revealed. Depending on the implemented model function, significant differences in the extracted particle size parameters are apparent. We also observe that the obtained "best-fit” size parameters in the fitting procedure are biased by the choice of their respective "first-guess” initial values. This behavior may be caused by the smooth temporal profile of the LII cooling curve, giving rise to shallow local minima on the multi-parameter least squares residuals, surface sampled during the regression analysis procedure. Knowledge of the gas phase temperature of the probed medium is considered important for obtaining unbiased size parameter information from TIRE-LII measurement

    Structure Determination of Disordered Metallic Sub-Monolayers by Helium Scattering: A Theoretical and Experimental Study

    Full text link
    An approach based on He scattering is used to develop an atomic-level structural model for an epitaxially grown disordered sub-monolayer of Ag on Pt(111) at 38K. Quantum scattering calculations are used to fit structural models to the measured angular intensity distribution of He atoms scattered from this system. The structure obtained corresponds to narrowly size-dispersed compact clusters with modest translational disorder, and not to fractals which might be expected due to the low surface temperature. The clusters have up to two layers in height, the lower one having few defects only. The relations between specific features of the angular scattering distribution, and properties such as the cluster sizes and shapes, the inter-cluster distance distribution etc., are discussed. The results demonstrate the usefulness of He scattering as a tool for unraveling new complex surface phases.Comment: 5 pages, 3 figures, to appear in Surf. Sci. Lett. Related papers available at http://neon.cchem.berkeley.edu/~dani/He-papers.htm
    • …
    corecore