101 research outputs found

    Aerosol physical and optical properties in the Eastern Mediterranean Basin, Crete, from Aerosol Robotic Network data

    Get PDF
    In this study, we investigate the aerosol optical properties, namely aerosol extinction optical thickness (AOT), Angström parameter and size distribution over the Eastern Mediterranean Basin, using spectral measurements from the recently established FORTH (Foundation for Research and Technology-Hellas) AERONET station in Crete, for the two-year period 2003–2004. The location of the FORTH-AERONET station offers a unique opportunity to monitor aerosols from different sources. Maximum values of AOT are found primarily in spring, which together with small values of the Angström parameter indicate dust transported from African deserts, whereas the minimum values of AOT occur in winter. In autumn, large AOT values observed at near-infrared wavelengths arise also from dust transport. In summer, large AOT values at ultraviolet (340 nm) and visible wavelengths (500 nm), together with large values of the Angström parameter, are associated with transport of fine aerosols of urban/industrial and biomass burning origin. The Angström parameter values vary on a daily basis within the range 0.05–2.20, and on a monthly basis within the range 0.68–1.9. This behaviour, together with broad frequency distributions and back-trajectory analyses, indicates a great variety of aerosol types over the study region including dust, urban-industrial and biomass-burning pollution, and maritime, as well as mixed aerosol types. Large temporal variability is observed in AOT, Angström parameter, aerosol content and size. The fine and coarse aerosol modes persist throughout the year, with the coarse mode dominant except in summer. The highest values of AOT are related primarily to southeasterly winds, associated with coarse aerosols, and to a less extent to northwesterly winds associated with fine aerosols. The results of this study show that the FORTH AERONET station in Crete is well suited for studying the transport and mixing of different types of aerosols from a variety of sources, especially those associated with major dust events from the Sahara

    The impact of temperature changes on summer time ozone and its precursors in the Eastern Mediterranean

    Get PDF
    Changes in temperature due to variability in meteorology and climate change are expected to significantly impact atmospheric composition. The Mediterranean is a climate sensitive region and includes megacities like Istanbul and large urban agglomerations such as Athens. The effect of temperature changes on gaseous air pollutant levels and the atmospheric processes that are controlling them in the Eastern Mediterranean are here investigated. The WRF/CMAQ mesoscale modeling system is used, coupled with the MEGAN model for the processing of biogenic volatile organic compound emissions. A set of temperature perturbations (spanning from 1 to 5 K) is applied on a base case simulation corresponding to July 2004. The results indicate that the Eastern Mediterranean basin acts as a reservoir of pollutants and their precursor emissions from large urban agglomerations. During summer, chemistry is a major sink at these urban areas near the surface, and a minor contributor at downwind areas. On average, the atmospheric processes are more effective within the first 1000 m above ground. Temperature increases lead to increases in biogenic emissions by 9±3% K<sup>−1</sup>. Ozone mixing ratios increase almost linearly with the increases in ambient temperatures by 1±0.1 ppb O<sub>3</sub> K<sup>−1</sup> for all studied urban and receptor stations except for Istanbul, where a 0.4±0.1 ppb O<sub>3</sub> K<sup>−1</sup> increase is calculated, which is about half of the domain-averaged increase of 0.9±0.1 ppb O<sub>3</sub> K<sup>−1</sup>. The computed changes in atmospheric processes are also linearly related with temperature changes

    Assessment of wood burning versus fossil fuel contribution to wintertime black carbon and carbon monoxide concentrations in Athens, Greece

    Get PDF
    The scope of this study was to estimate the contribution of fossil fuel and wood burning combustion to black carbon (BC) and carbon monoxide (CO) during wintertime, in Athens. For that purpose, in situ measurements of equivalent black carbon (eBC) and CO were simultaneously conducted in a suburban and an urban background monitoring site in Athens during the 3 months of winter 2014–2015. For the deconvolution of eBC into eBC emitted from fossil fuel (BCff) and wood burning (BCwb), a method based on the spectral dependency of the absorption of pure black carbon and brown carbon was used. Thereafter, BCwb and BCff estimated fractions were used along with measured CO concentrations in a multiple regression analysis, in order to quantify the contribution of each one of the combustion sources to the ambient CO levels. For a comparative analysis of the results, we additionally estimated the wood burning and fossil fuel contribution to CO, calculated on the basis of their CO&thinsp;∕&thinsp;NOx emission ratios. The results indicate that during wintertime BC and CO are mainly emitted by local sources within the Athens Metropolitan Area (AMA). Fossil fuel combustion, mainly from road traffic, is found to be the major contributor to both eBC in PM2.5 and CO ambient concentrations in AMA. However, wintertime wood burning makes a significant contribution to the observed eBC (of about 30&thinsp;%) and CO concentrations (on average, 11 and 16&thinsp;% of total CO in the suburban and urban background sites respectively). Both BC and CO from biomass burning (BCwb and COwb, respectively) present a clear diurnal pattern, with the highest concentrations during night-time, supporting the theory of local domestic heating being their main source.</p

    Effects on surface atmospheric photo-oxidants over Greece during the total solar eclipse event of 29 March 2006

    Get PDF
    International audienceThis study investigates the effects of the total solar eclipse of 29 March 2006 on surface air-quality levels over Greece based on observations at a number of sites in conjunction with chemical box modelling and 3-D air-quality modelling. Emphasis is given on surface ozone and other photooxidants at four Greek sites Kastelorizo, Finokalia (Crete), Pallini (Athens) and Thessaloniki, which are located at gradually increasing distances from the path of the eclipse totality and are characterized by different air pollution levels. The eclipse offered the opportunity to test our understanding of air pollution build-up and the response of the gas-phase chemistry of photo-oxidants during a photolytical perturbation using both a photochemical box model and a regional air-quality offline model based on the modeling system WRF/CAMx. At the relatively unpolluted sites of Kastelorizo and Finokalia no clear impact of the solar eclipse on surface O3, NO2 and NO concentrations can be deduced from the observations and model simulations as the calculated changes in net ozone production rates between eclipse and non eclipse conditions are rather small compared to the ozone variability and hence the solar eclipse effects on ozone can be easily masked by transport. At the polluted sites of Thessaloniki and Pallini, the solar eclipse effects on O3, NO2 and NO concentrations are clearly revealed from both the measurements and 3-D air-quality modeling with the net effect being a decrease in O3 and NO and an increase in NO2 as NO2 formed from the reaction of O3 with NO while at the same time NO2 is not efficiently photolysed. It is evident from the 3-D air quality modeling over Greece that the maximum effects of the eclipse on O3, NO2 and NO are reflected at the large urban agglomerations of Athens, and Thessaloniki where the maximum of the emissions occur

    Coupling effect of ozone column and atmospheric infrared sounder data reveal evidence of earthquake precursor phenomena of Bam earthquake, Iran

    Get PDF
    Understanding the source mechanism of earthquakes may be the key to predict earthquakes. The testing of radioactive radiations and reactionary hypothesis of gases before and after quake events can help predict and monitor earthquake occurrence. In this study, the Atmospheric Infrared Sounder (AIRS) and the column ozone (O3) were applied to evaluate the December 26, 2003 earthquake of Bam city in western Iran. The results show that ozone concentration (column density) decreased about 30 DU and or 807 × 10E15/cm2 molecules. Using high-resolution AIRS data for the study area, we were able to discriminate gases that formed and changed before the main shock at least a day before the occurrence of the quake in Bam

    Sustainable use of tomato pomace for the production of high added value food, feed, and nutraceutical products

    No full text
    Tomatoes (Solanum lycopersicum (L.)) are one of the most consumed and nutritious vegetables in the world, rich in lycopene, other carotenoids (β-carotene), phenolics, organic acids, vitamins, and many other bioactive and health-promoting components. Besides its bulk consumption as a fresh vegetable, tomato is also used to produce a series of processed products, such as juice, puree, sauce, paste, and ketchup. Tomato processing leads to a solid residual called tomato pomace (abbreviated as TP), which mainly consists of peels and seeds as well as a small amount of pulp. On average, TP accounts for approximately 3%-5% (w/w) of the processed raw tomatoes. Statistically, the most up-to-date FAO data showed that the harvested area and the global production of tomatoes are rising. © 2022 Elsevier Inc. All rights reserved

    Utilization of olive mill waste waters to produce bioactive animal feed

    No full text
    Olive biomass as a source of bioactive compounds is a priority in the applied research. Regarding the extraction of valuable compounds that may be marketable in the pharmaceutical and cosmetic industries, Galanakis and Kotsiou described different technologies for the recovery of bioactive compounds from olive oil processing byproducts and suggested an integrated method that ensures the sustainability of the process. The most widely-used technique is to pretreat the initial material and convert oleuropein to hydroxytyrosol, prior to extracting phenols with solvent and/or other technologies. Fernández-Bolaños et al. summarized the current knowledge on the utilization of residual products, with more than 90 references including articles and patents, and highlighted promising future applications. They classified all these studies into two options for use: the recovery of valuable natural components, and bioconversion into useful products. Olive mill waste water (OMWW) is a rich source of bioactive compounds and natural phenols, including hydroxytyrosol a natural phenolic phytochemical with remarkable antioxidant properties that potentially affect blood lipid levels. Phenols such as hydroxytyrosol, tyrosol, oleuropein recovered from OMWW are also active UV filters used in cosmetics. An interesting possibility is the application of the “cascading use” principle, whereby energy use is allowed only after valuable compounds have been extracted. © 2022 Elsevier Inc. All rights reserved
    corecore