15 research outputs found

    Feasibility studies for the measurement of time-like proton electromagnetic form factors from p¯ p→ μ+μ- at P ¯ ANDA at FAIR

    Get PDF
    This paper reports on Monte Carlo simulation results for future measurements of the moduli of time-like proton electromagnetic form factors, | GE| and | GM| , using the p¯ p→ μ+μ- reaction at P ¯ ANDA (FAIR). The electromagnetic form factors are fundamental quantities parameterizing the electric and magnetic structure of hadrons. This work estimates the statistical and total accuracy with which the form factors can be measured at P ¯ ANDA , using an analysis of simulated data within the PandaRoot software framework. The most crucial background channel is p¯ p→ π+π-, due to the very similar behavior of muons and pions in the detector. The suppression factors are evaluated for this and all other relevant background channels at different values of antiproton beam momentum. The signal/background separation is based on a multivariate analysis, using the Boosted Decision Trees method. An expected background subtraction is included in this study, based on realistic angular distributions of the background contribution. Systematic uncertainties are considered and the relative total uncertainties of the form factor measurements are presented

    Mobilization of biomass for energy from boreal forests in Finland & Russia under present sustainable forest management certification and new sustainability requirements for solid biofuels

    No full text
    Forest biomass is one of the main contributors to the EU's renewable energy target of 20% gross final energy consumption in 2020 (Renewable Energy Directive). Following the RED, new sustainability principles are launched by the European energy sector, such as the Initiative Wood Pellet Buyers (IWPB or SBP). The aim of our study is the investigation of the quantitative impacts from IWPB's principles for forest biomass for energy only. We deploy a bottom up method that quantifies the supplies and the costs from log harvest until forest chip delivery at a domestic consumer. We have a reference situation with existing national (forest) legislation and voluntary certification schemes (scenario 1) and a future situation with additional criteria based on the IWPB principles (scenario 2). Two country studies were selected for our (2008) survey: one in Finland with nearly 100% certification and one in Leningrad province with a minor areal share of certification in scenario 1. The sustainable potential of forest resources for energy is about 54 Mm3 (385 PJ) in Finland and about 13.5 Mm3 (95 PJ) in Leningrad in scenario 1 without extra criteria. The potential volumes reduce considerably by maximum 43% respectively 39% after new criteria from the IWPB, like a minimum use of sawlogs, stumps and slash for energy, and by an increased area of protected forests (scenario 2A Maximum extra restrictions). In case sawlogs can be used, but instead ash recycling is applied after a maximum stump and slash recovery (scenario 2B Minimum extra restrictions), the potential supply is less reduced: 5% in Finland and 22% in Leningrad region. The estimated reference costs for forest chips are between €18 and €45 solid m-3 in Finland and between €7 and €33 solid m-3 in the Leningrad region. In scenario 2A, the costs will mainly increase by €7 m-3 for delimbing full trees (Finland), and maximum €0.3 m-3 for suggested improved forest management (Leningrad region). In scenario 2B, when ash recycling is applied, costs increase by about €0.3 to €1.6 m-3, depending on the rate of soil contamination. This is an increase of 2%, on top of the costs in scenario 2A

    Mobilization of wood chips from boreal forests after possible extra criteria for solid biomass

    No full text
    Forest biomass is one of the main contributors to the EU’s renewable energy target of 20% gross final energy consumption in 2020 (Renewable Energy Directive). Following the RED, new sustainability principles are launched by the European energy sector, such as Sustainable Biomass Partnership (former IWPB). We have a reference situation with existing national (forest) legislation and sustainable forest management (SFM) schemes (scenario 1) and a future situation based on additional SBP principles (scenario 2). Two country studies were selected for our survey: one in Finland with nearly 100% SFM certification and one in Leningrad province with a minor areal share of certification in scenario 1. The potential volumes reduce after new criteria from the SBP in scenario 2. The costs will also increase in scenario 2, both in Leningrad region and Finland.JRC.H.3-Forest Resources and Climat
    corecore