5 research outputs found

    Anisotropy of magnetic susceptibility of the Pyrenean granites

    Get PDF
    In this paper, we report on a compilation of more than 2200 sites (more than 10,000 individual measurements) where anisotropy of magnetic susceptibility (AMS) was studied in granites from the Variscan Pyrenees. The standardization and homogenization of this information has allowed us to produce three Main Maps that synthesize all the information related with the AMS of the Pyrenean granites. We also describe the problems found during the construction of the database (variable geo-positioning, different published information, etc.). The information derived from 21 granite bodies, the database, and the synthesis maps (magnetic susceptibility, Km, and the orientation of the magnetic foliation, plane perpendicular to k3, and of the magnetic lineation, k1) allow us to see for the first time a complete image of this important kinematic and petrographic indicator

    The SIB Swiss Institute of Bioinformatics' resources: focus on curated databases

    Get PDF
    The SIB Swiss Institute of Bioinformatics (www.isb-sib.ch) provides world-class bioinformatics databases, software tools, services and training to the international life science community in academia and industry. These solutions allow life scientists to turn the exponentially growing amount of data into knowledge. Here, we provide an overview of SIB's resources and competence areas, with a strong focus on curated databases and SIB's most popular and widely used resources. In particular, SIB's Bioinformatics resource portal ExPASy features over 150 resources, including UniProtKB/Swiss-Prot, ENZYME, PROSITE, neXtProt, STRING, UniCarbKB, SugarBindDB, SwissRegulon, EPD, arrayMap, Bgee, SWISS-MODEL Repository, OMA, OrthoDB and other databases, which are briefly described in this article

    Structure des granites hercyniens des Pyrenees de Mont-Louis-Andorre a la Maladeta

    No full text
    SIGLEAvailable from INIST (FR), Document Supply Service, under shelf-number : T 84471 / INIST-CNRS - Institut de l'Information Scientifique et TechniqueFRFranc

    Anisotropy, inhomogeneity, and tension–compression nonlinearity of human glenohumeral cartilage in finite deformation

    No full text
    The tensile and compressive properties of human glenohumeral cartilage were determined by testing 120 rectangular strips in uniaxial tension and 70 cylindrical plugs in confined compression, obtained from five human glenohumeral joints. Specimens were harvested from five regions across the articular surface of the humeral head and two regions on the glenoid. Tensile strips were obtained along two orientations, parallel and perpendicular to the split-line directions. Two serial slices through the thickness, corresponding to the superficial and middle zones of the cartilage layers, were prepared from each tensile strip and each compressive plug. The equilibrium tensile modulus and compressive aggregate modulus of cartilage were determined from the uniaxial tensile and confined compression tests, respectively. Significant differences in the tensile moduli were found with depth and orientation relative to the local split line direction. Articular cartilage of the humeral head was significantly stiffer in tension than that of the glenoid. There were significant differences in the aggregate compressive moduli of articular cartilage between superficial and middle zones in the humeral head. Furthermore, tensile and compressive stress-strain responses exhibited nonlinearity under finite strain while the tensile modulus differed by up to two orders of magnitude from the compressive aggregate modulus at 0% strain, demonstrating a high degree of tension-compression nonlinearity. The complexity of the mechanical properties of human glenohumeral cartilage was exposed in this study, showing anisotropy, inhomogeneity, and tension-compression nonlinearity within the same joint. The observed differences in the tensile properties of human glenohumeral cartilage suggest that the glenoid may be more susceptible to cartilage degeneration than the humeral head

    Anisotropy of magnetic susceptibility of the Pyrenean granites

    No full text
    <p>In this paper, we report on a compilation of more than 2200 sites (more than 10,000 individual measurements) where anisotropy of magnetic susceptibility (AMS) was studied in granites from the Variscan Pyrenees. The standardization and homogenization of this information has allowed us to produce three <a href="https://doi.org/10.1080/17445647.2017.1302364" target="_blank">Main Maps</a> that synthesize all the information related with the AMS of the Pyrenean granites. We also describe the problems found during the construction of the database (variable geo-positioning, different published information, etc.). The information derived from 21 granite bodies, the database, and the synthesis maps (magnetic susceptibility, Km, and the orientation of the magnetic foliation, plane perpendicular to k3, and of the magnetic lineation, k1) allow us to see for the first time a complete image of this important kinematic and petrographic indicator.</p
    corecore