13 research outputs found

    Impact of lifelong exercise training on endothelial ischemia-reperfusion and ischemic preconditioning in humans.

    Get PDF
    Reperfusion is essential for ischemic tissue survival, but causes additional damage to the endothelium (i.e. ischemia-reperfusion [IR] injury). Ischemic preconditioning (IPC) refers to short repetitive episodes of ischemia that can protect against IR. However, IPC efficacy attenuates with older age. Whether physical inactivity contributes to the attenuated efficacy of IPC to protect against IR injury in older humans is unclear. We tested the hypotheses that lifelong exercise training relates to 1) attenuated endothelial IR and 2) maintained IPC efficacy that protects veteran athletes against endothelial IR. In 18 sedentary male individuals (SED, 20 years, 63±7 years) and 20 veteran male athletes (ATH, >5 exercise hours/week for >20 years, 63±6 years), we measured brachial artery endothelial function with flow-mediated dilation (FMD) before and after IR. We induced IR by 20-minutes of ischemia followed by 20-minutes of reperfusion. Randomized over 2 days, participants underwent either 35-minute rest or IPC (3 cycles of 5-minutes cuff inflation to 220 mmHg with 5-minutes of rest) before IR. In SED, FMD decreased after IR (median [interquartile range]): (3.0% [2.0-4.7] to 2.1% [1.5-3.9], P=0.046) and IPC did not prevent this decline (4.1% [2.6-5.2] to 2.8% [2.2-3.6],P=0.012). In ATH, FMD was preserved after IR (3.0% [1.7-5.4] to 3.0% [1.9-4.1], P=0.82) and when IPC preceded IR (3.2% [1.9-4.2] to 2.8% [1.4-4.6],P=0.18). These findings indicate that lifelong exercise training is associated with increased tolerance against endothelial IR. These protective, preconditioning effects of lifelong exercise against endothelial ischemia-reperfusion may contribute to the cardio-protective effects of exercise training

    Ischemic Preconditioning in the Animal Kidney, a Systematic Review and Meta-Analysis

    Get PDF
    Ischemic preconditioning (IPC) is a potent renoprotective strategy which has not yet been translated successfully into clinical practice, in spite of promising results in animal studies. We performed a unique systematic review and meta-analysis of animal studies to identify factors modifying IPC efficacy in renal ischemia/reperfusion injury (IRI), in order to enhance the design of future (clinical) studies. An electronic literature search for animal studies on IPC in renal IRI yielded fifty-eight studies which met our inclusion criteria. We extracted data for serum creatinine, blood urea nitrogen and histological renal damage, as well as study quality indicators. Meta-analysis showed that IPC reduces serum creatinine (SMD 1.54 [95%CI 1.16, 1.93]), blood urea nitrogen (SMD 1.42 [95% CI 0.97, 1.87]) and histological renal damage (SMD 1.12 [95% CI 0.89, 1.35]) after IRI as compared to controls. Factors influencing IPC efficacy were the window of protection (<24 h = early vs. ≥24 h = late) and animal species (rat vs. mouse). No difference in efficacy between local and remote IPC was observed. In conclusion, our findings show that IPC effectively reduces renal damage after IRI, with higher efficacy in the late window of protection. However, there is a large gap in study data concerning the optimal window of protection, and IPC efficacy may differ per animal species. Moreover, current clinical trials on RIPC may not be optimally designed, and our findings identify a need for further standardization of animal experiments

    Interaction Study of the Combined Use of Paroxetine and Fosamprenavir-Ritonavir in Healthy Subjectsâ–¿

    Get PDF
    Human immunodeficiency virus-infected patients have an increased risk for depression. Despite the high potential for drug-drug interactions, limited data on the combined use of antidepressants and antiretrovirals are available. Theoretically, ritonavir-boosted protease inhibitors may inhibit CYP2D6-mediated metabolism of paroxetine. We wanted to determine the effect of fosamprenavir-ritonavir on paroxetine pharmacokinetics and vice versa and to evaluate the safety of the combination. Group A started with 20 mg paroxetine every day for 10 days; after a wash-out period of 16 days, subjects received paroxetine (20 mg every day) plus fosamprenavir-ritonavir (700/100 mg twice a day) from days 28 to 37. Group B received the regimens in reverse order. On days 10 and 37, pharmacokinetic curves were recorded. Twenty-six healthy subjects (18 females, 8 males) were included. Median (range) age and weight were 44.4 (18.2 to 64.3) years and 68.8 (51.0 to 89.4) kg. Three subjects were excluded (two because of adverse events; one for nonadherence). Addition of fosamprenavir-ritonavir to paroxetine resulted in a significant decrease in paroxetine exposure: the geometric mean ratios (90% confidence intervals) of paroxetine plus fosamprenavir-ritonavir to paroxetine alone were 0.45 (0.41 to 0.49) for the area under the concentration-time curve from 0 to 24 h (AUC0-24), 0.49 (0.45 to 0.53) for the maximum concentration of the drug in plasma (Cmax), and 0.75 (0.71 to 0.80) for the apparent elimination half-life (t1/2). The free fraction of paroxetine showed a median (interquartile range) increase of 30% (18 to 42%) after the addition of fosamprenavir-ritonavir. The AUC0-12, Cmax, Cmin, and t1/2 of amprenavir and ritonavir were similar to those of historical controls. No serious adverse events occurred. Fosamprenavir-ritonavir reduced total paroxetine exposure by 55%. This is partly explained by protein displacement of paroxetine. We think that this interaction is clinically relevant and that titration to a higher dose of paroxetine may be necessary to accomplish the needed antidepressant effect

    Aging attenuates the protective effect of ischemic preconditioning against endothelial ischemia-reperfusion injury in humans

    No full text
    Item does not contain fulltextReperfusion is mandatory after ischemia but also triggers ischemia-reperfusion (I/R) injury. Ischemic preconditioning (IPC) can limit endothelial I/R injury. Nonetheless, translation of IPC to the clinical arena is often disappointing. Since application of IPC typically relates to older patients, efficacy of IPC may be attenuated with aging. Our objective was to examine the impact of advanced age on the ability of IPC to protect against endothelial dysfunction due to I/R injury. We included 15 healthy young (20-25 yr) and 15 older (68-77 yr) men. We examined brachial artery endothelial function using flow-mediated dilation (FMD) before and after arm I/R (induced by inflation of an upper-arm blood pressure cuff for 20 min and 15 min of reperfusion). In a randomized order, I/R was preceded by IPC or a control intervention consisting of three cycles of 5 min upper-arm cuff inflation to 220 or 20 mmHg, respectively. As a result, in young men, FMD decreased significantly after I/R (6.4 +/- 2.7 to 4.4 +/- 2.5%). This decrease was not present when I/R was preceded by IPC (5.9 +/- 2.3 to 5.6 +/- 2.5%). IPC-induced protection appeared to be significantly reduced in the elderly patients (P = 0.04). Although FMD decreased after I/R in older men (3.5 +/- 1.7 to 2.5 +/- 1.0%), IPC could not prevent this (3.7 +/- 2.1 to 2.2 +/- 1.1%). In conclusion, this study is the first to observe in humans in vivo that older age is associated with an abolished effect of IPC to protect against endothelial dysfunction after I/R in the brachial artery. This provides a possible explanation for the problematic translation of strategies that reduce I/R injury from preclinical work to the clinical arena

    Dutch Pharmacogenetics Working Group (DPWG) guideline for the gene-drug interaction between CYP2D6 and opioids (codeine, tramadol and oxycodone)

    Get PDF
    The current Dutch Pharmacogenetics Working Group (DPWG) guideline, describes the gene-drug interaction between CYP2D6 and the opioids codeine, tramadol and oxycodone. CYP2D6 genotype is translated into normal metaboliser (NM), intermediate metaboliser (IM), poor metaboliser (PM) or ultra-rapid metaboliser (UM). Codeine is contraindicated in UM adults if doses >20 mg every 6 h (q6h), in children >= 12 years if doses >10 mg q6h, or with additional risk factors. In PMs, an alternative analgesic should be given which is not or to a lesser extent metabolised by CYP2D6 (not tramadol). In IMs with insufficient analgesia, a higher dose or alternative analgesic should be given. For tramadol, the recommendations for IMs and PMs are the same as the recommendation for codeine and IMs. UMs should receive an alternative drug not or to a lesser extent metabolised by CYP2D6 or the dose should be decreased to 40% of the commonly prescribed dose. Due to the absence of effect on clinical outcomes of oxycodone in PMs, IMs and UMs no action is required. DPWG classifies CYP2D6 genotyping for codeine "beneficial" and recommends testing prior to, or shortly after initiation of treatment in case of higher doses or additional risk factors. CYP2D6 genotyping is classified as "potentially beneficial" for tramadol and can be considered on an individual patient basis

    Dutch Pharmacogenetics Working Group (DPWG) guideline for the gene-drug interaction between CYP2D6 and opioids (codeine, tramadol and oxycodone)

    No full text
    The current Dutch Pharmacogenetics Working Group (DPWG) guideline, describes the gene-drug interaction between CYP2D6 and the opioids codeine, tramadol and oxycodone. CYP2D6 genotype is translated into normal metaboliser (NM), intermediate metaboliser (IM), poor metaboliser (PM) or ultra-rapid metaboliser (UM). Codeine is contraindicated in UM adults if doses &gt;20 mg every 6 h (q6h), in children &gt;= 12 years if doses &gt;10 mg q6h, or with additional risk factors. In PMs, an alternative analgesic should be given which is not or to a lesser extent metabolised by CYP2D6 (not tramadol). In IMs with insufficient analgesia, a higher dose or alternative analgesic should be given. For tramadol, the recommendations for IMs and PMs are the same as the recommendation for codeine and IMs. UMs should receive an alternative drug not or to a lesser extent metabolised by CYP2D6 or the dose should be decreased to 40% of the commonly prescribed dose. Due to the absence of effect on clinical outcomes of oxycodone in PMs, IMs and UMs no action is required. DPWG classifies CYP2D6 genotyping for codeine "beneficial" and recommends testing prior to, or shortly after initiation of treatment in case of higher doses or additional risk factors. CYP2D6 genotyping is classified as "potentially beneficial" for tramadol and can be considered on an individual patient basis.</p

    Dutch Pharmacogenetics Working Group (DPWG) guideline for the gene-drug interaction between CYP2C19 and CYP2D6 and SSRIs

    Get PDF
    The Dutch Pharmacogenetics Working Group (DPWG) guideline presented here, presents the gene-drug interaction between the genes CYP2C19 and CYP2D6 and antidepressants of the selective serotonin reuptake inhibitor type (SSRIs). Both genes' genotypes are translated into predicted normal metabolizer (NM), intermediate metabolizer (IM), poor metabolizer (PM), or ultra-rapid metabolizer (UM). Evidence-based dose recommendations were obtained, based on a structured analysis of published literature. In CYP2C19 PM patients, escitalopram dose should not exceed 50% of the normal maximum dose. In CYP2C19 IM patients, this is 75% of the normal maximum dose. Escitalopram should be avoided in UM patients. In CYP2C19 PM patients, citalopram dose should not exceed 50% of the normal maximum dose. In CYP2C19 IM patients, this is 70% (65-75%) of the normal maximum dose. In contrast to escitalopram, no action is needed for CYP2C19 UM patients. In CYP2C19 PM patients, sertraline dose should not exceed 37.5% of the normal maximum dose. No action is needed for CYP2C19 IM and UM patients. In CYP2D6 UM patients, paroxetine should be avoided. No action is needed for CYP2D6 PM and IM patients. In addition, no action is needed for the other gene-drug combinations. Clinical effects (increase in adverse events or decrease in efficacy) were lacking for these other gene-drug combinations. DPWG classifies CYP2C19 genotyping before the start of escitalopram, citalopram, and sertraline, and CYP2D6 genotyping before the start of paroxetine as "potentially beneficial" for toxicity/effectivity predictions. This indicates that genotyping prior to treatment can be considered on an individual patient basis

    Dutch pharmacogenetics working group (DPWG) guideline for the gene-drug interaction between UGT1A1 and irinotecan

    No full text
    The Dutch Pharmacogenetics Working Group (DPWG) aims to facilitate PGx implementation by developing evidence-based pharmacogenetics guidelines to optimize pharmacotherapy. This guideline describes the starting dose optimization of the anti-cancer drug irinotecan to decrease the risk of severe toxicity, such as (febrile) neutropenia or diarrhoea. Uridine diphosphate glucuronosyl transferase 1A1 (UGT1A1 encoded by the UGT1A1 gene) enzyme deficiency increases risk of irinotecan-induced toxicity. Gene variants leading to UGT1A1 enzyme deficiency (e.g. UGT1A1*6, *28 and *37) can be used to optimize an individual's starting dose thereby preventing carriers from toxicity. Homozygous or compound heterozygous carriers of these allele variants are defined as UGT1A1 poor metabolisers (PM). DPWG recommends a 70% starting dose in PM patients and no dose reduction in IM patients who start treatment with irinotecan. Based on the DPWG clinical implication score, UGT1A1 genotyping is considered "essential", indicating that UGT1A1 testing must be performed prior to initiating irinotecan treatment

    Endotoxin tolerance does not limit mild ischemia-reperfusion injury in humans in vivo.

    No full text
    Contains fulltext : 80768.pdf (publisher's version ) (Closed access)Animal studies have shown that previous exposure to lipopolysaccharide (LPS) can limit ischemia-reperfusion injury. We tested whether pretreatment with LPS also protects against ischemia-reperfusion injury in humans in vivo. Fourteen volunteers received bolus injections of incremental dosages of LPS on 5 consecutive days (LPS group). Before the first and 1 day after the last LPS administration, the forearm circulation of the non-dominant arm was occluded for 10 min, with concomitant intermittent handgripping to induce transient ischemia. After reperfusion, 0.1 mg of ( 99m)Tc-labeled annexin A5 (400 MBq) was injected intravenously to detect phosphatidylserine expression as an early marker of ischemia-reperfusion injury. Similarly, the control group (n = 10) underwent the ischemic exercise twice, but without pretreatment with LPS. Annexin A5 targeting was expressed as the percentage difference in radioactivity in the thenar muscle between both hands. Endotoxin tolerance developed during 5 consecutive days of LPS administration. Annexin A5 targeting was 12.1 +/- 2.2% and 10.4 +/- 2.1% before LPS treatment at 1 h and 4 h after reperfusion, compared to 12.2 +/- 2.4% and 8.9 +/- 2.1% at 1 h and 4 h after reperfusion on day 5 (P = 1.0 and 0.6, respectively). Also, no significant changes in annexin A5 targeting were found in the control group. So, in this model, LPS-tolerance does not protect against ischemia-reperfusion injury in humans in vivo
    corecore