130 research outputs found
Explaining and Evaluating Deep Tissue Classification by Visualizing Activations of Most Relevant Intermediate Layers
Deep Learning-based tissue classification may support pathologists in analyzing digitized whole slide images. However, in such critical tasks, only approaches that can be validated by medical experts in advance to deployment, are suitable. We present an approach that contributes to making automated tissue classification more transparent. We step beyond broadly used visualizations for last layers of a convolutional neural network by identifying most relevant intermediate layers applying Grad-CAM. A visual evaluation by a pathologist shows that these layers assign relevance, where important morphological structures are present in case of correct class decisions. We introduce a tool that can be easily used by medical experts for such validation purposes for any convolutional neural network and any layer. Visual explanations for intermediate layers provide insights into a neural network’s decision for histopathological tissue classification. In future research also the context of the input data must be considered
Craniofacial Osteosarcoma—Pilot Study on the Expression of Osteobiologic Characteristics and Hypothesis on Metastasis
Background: Craniofacial osteosarcomas (COS) and extracranial osteosarcomas (EOS) show distinct clinical differences. COS show a remarkably lower incidence of metastases and a better survival. However, in contrast to EOS, they show a poor response to neoadjuvant chemotherapy. Tumor-associated macrophages and their polarization as well as developmental biological signaling pathways are possible candidates for explaining the clinical differences between COS and EOS. The aim of the study was to analyze differential expression of macrophage markers and important regulators of these pathways.
Methods: Twenty osteosarcoma cases (10 COS and 10 EOS) were immunohistochemically stained to assess CD68, CD11c, CD163, MRC1, Gli1, and Gli2 expression. Statistical differences between COS and EOS were tested using the Mann–Whitney U test. Additionally, the paper describes an example of multidisciplinary treatment of a patient suffering from COS and discusses the surgical challenges in treatment and rehabilitation of COS.
Results: COS showed a significantly (p < 0.05) increased infiltration of CD11c-positive M1 macrophages and a shift toward M1 polarization compared to EOS. Additionally, COS revealed a significantly (p < 0.05) lower Gli1 expression than EOS.
Conclusion: The reduced Gli1 expression in COS can be interpreted as reduced activation of the Hedgehog (Hh) signaling pathway. The increased M1 polarization and reduced Hh activation in COS could explain the low incidence of metastases in these osteosarcomas
Further Evidence of Neuroprotective Effects of Recombinant Human Erythropoietin and Growth Hormone in Hypoxic Brain Injury in Neonatal Mice
Experimental in vivo data have recently shown complementary neuroprotective actions of rhEPO and growth hormone (rhGH) in a neonatal murine model of hypoxic brain injury. Here, we hypothesized that rhGH and rhEPO mediate stabilization of the blood–brain barrier (BBB) and regenerative vascular effects in hypoxic injury to the developing brain. Using an established model of neonatal hypoxia, neonatal mice (P7) were treated i.p. with rhGH (4000 µg/kg) or rhEPO (5000 IU/kg) 0/12/24 h after hypoxic exposure. After a regeneration period of 48 h or 7 d, cerebral mRNA expression of Vegf-A, its receptors and co-receptors, and selected tight junction proteins were determined using qRT-PCR and ELISA. Vessel structures were assessed by Pecam-1 and occludin (Ocln) IHC. While Vegf-A expression increased significantly with rhGH treatment (p < 0.01), expression of the Vegfr and TEK receptor tyrosine kinase (Tie-2) system remained unchanged. RhEPO increased Vegf-A (p < 0.05) and Angpt-2 (p < 0.05) expression. While hypoxia reduced the mean vessel area in the parietal cortex compared to controls (p < 0.05), rhGH and rhEPO prevented this reduction after 48 h of regeneration. Hypoxia significantly reduced the Ocln+ fraction of cortical vascular endothelial cells. Ocln signal intensity increased in the cortex in response to rhGH (p < 0.05) and in the cortex and hippocampus in response to rhEPO (p < 0.05). Our data indicate that rhGH and rhEPO have protective effects on hypoxia-induced BBB disruption and regenerative vascular effects during the post-hypoxic period in the developing brain
Fiber rich food suppressed airway inflammation, GATA3 + Th2 cells, and FcεRIα+ eosinophils in asthma
BackgroundAllergic Asthma is a disease presenting various endotypes and no current therapies act curative but alleviate disease symptoms. Dietary interventions are gaining increasing importance in regulating immune responses. Furthermore, short chain fatty acids (SFCA), as the main products of dietary fiber’s fermentation by the gut bacteria, ameliorate the pathogenesis and disease burden of different illnesses including asthma. Nevertheless, the connection and crosstalk between the gut and lung is poorly understood.ObjectiveIn this work, the role of high fiber diet on the development of allergic asthma at baseline and after exacerbation of disease induced by respiratory viruses was investigated.MethodsHereby, SCFA in serum of asthmatic and non-asthmatic pre-school children before and after airway disease symptoms were analyzed. Moreover, the effect of high fiber diet in vivo in a murine model of house dust mite extract (HDM) induced allergic asthma and in the end in isolated lung and spleen cells infected ex vivo with Rhinovirus was analyzed.ResultsIn this study, a decrease of the SCFA 3-Hydroxybutyric acid in serum of asthmatic children after symptomatic episodes at convalescent visit as compared to asthmatic and control children at baseline visit was observed. In experimental asthma, in mice fed with high fiber diet, a reduced lung GATA3 + Th2 type mediated inflammation, mucus production and collagen deposition and expression of Fc epsilon receptor Ia (FcεRIa) in eosinophils was observed. By contrast, the CD8+ memory effector T cells were induced in the lungs of asthmatic mice fed with high fiber diet. Then, total lung cells from these asthmatic mice fed with either standard food or with fiber rich food were infected with RV ex vivo. Here, RV1b mRNA was found significantly reduced in the lung cells derived from fiber rich food fed mice as compared to those derived from standard food fed asthmatic mice. Looking for the mechanism, an increase in CD8+ T cells in RV infected spleen cells derived from fiber rich fed asthmatic mice, was observed.ConclusionConvalescent preschool asthmatic children after a symptomatic episode have less serum ß-Hydroxybutyric acid as compared to control and asthmatic children at baseline visit. Fiber rich diet associated with anti-inflammatory effects as well as anti-allergic effects by decreasing Type 2 and IgE mediated immune responses and inducing CD8+ memory effector T cells in a murine model of allergic asthma. Finally, ex vivo infection with Rhinovirus (RV) of total lung cells from asthmatic mice fed with fiber rich food led to a decreased RV load as compared to mice fed with standard food. Moreover, spleen cells derived from asthmatic mice fed with fiber rich food induced CD8+ T cells after ex vivo infection with RV.Clinical implicationsDietary interventions with increased content in natural fibers like pectins would ameliorate asthma exacerbations. Moreover, respiratory infection in asthma downregulated SCFA in the gut contributing to asthma exacerbations
An Immunoregulatory Role of Interleukin-3 in Allergic Asthma
Background
Allergic asthma is a chronic airway inflammatory disease associated with airway mucus hyper-production. ILC2 cells, which express the Th2 transcription factor GATA3, have been associated with allergic asthma. The cytokine IL-3 is known to support eosinophil, basophil and mucosal mast cell differentiation and survival; however, its role on T regulatory cells as well as on lung ILC2 and in pediatric asthma needs further investigation.
Objectives
To investigate the role of IL-3 in preschool children and to explore its therapeutic role in experimental asthma.
Methods
In a cohort of preschool children with and without asthma, we analyzed the secretion of IL-3 in nasopharyngeal fluid (NPF) and IL-3 receptor (R) alpha chain mRNA expression in peripheral blood mononuclear cells (PBMCs). In a murine model of allergic asthma, we analyzed the phenotype of wild-type untreated and rIL-3 intranasally treated asthmatic mice.
Results
IL-3 was found downregulated in the nasopharyngeal fluid of children with partially controlled asthma, as compared to control children. Moreover, IL-3 was found induced in phytohemagglutinin (PHA)-stimulated PBMCs from children with asthma and treated with steroids. Finally, IL-3 in NPF directly correlated with the anti-inflammatory molecule sST2 in steroid-treated asthmatic children. Intranasal rIL-3 delivery in vivo during the challenge phase decreased airway mucus production and inflammatory eosinophils. Moreover, rIL-3 given during the challenge phase, reduced lung ST2intGATA3+ILC2, accompanied by an induction of T regulatory cells in the airways.
Conclusions
IL-3 was found associated with steroid-resolved asthma. Moreover, treatment with rIL-3 resulted in amelioration of airway eosinophilia and mucus production, two main pathophysiological conditions associated with asthma in a murine model of allergic asthma. Thus, rIL-3 opens new strategies for immunotherapy of this disease
Expression of GP88 (Progranulin) Protein Is an Independent Prognostic Factor in Prostate Cancer Patients
Prostate cancer, the second most common cancer, is still a major cause of morbidity and mortality among men worldwide. The expression of the survival and proliferation factor progranulin (GP88) has not yet been comprehensively studied in PCa tumors. The aim of this study was to characterize GP88 protein expression in PCa by immunohistochemistry and to correlate the findings to the clinico-pathological data and prognosis. Immunohistochemical staining for GP88 was performed by TMA with samples from 442 PCa patients using an immunoreactive score (IRS). Altogether, 233 cases (52.7%) with negative GP88 staining (IRS < 2) and 209 cases (47.3%) with positive GP88 staining (IRS ≥ 2) were analyzed. A significant positive correlation was found for the GP88 IRS with the PSA value at prostatectomy and the cytoplasmic cytokeratin 20 IRS, whereas it was negatively associated with follow-up times. The association of GP88 staining with prognosis was further studied by survival analyses (Kaplan–Meier, univariate and multivariate Cox’s regression analysis). Increased GP88 protein expression appeared as an independent prognostic factor for overall, disease-specific and relapse-free survival in all PCa patients. Interestingly, in the subgroup of younger PCa patients (≤65 years), GP88 positivity was associated with a 3.8-fold (p = 0.004), a 6.0-fold (p = 0.008) and a 3.7-fold (p = 0.003) increased risk for death, disease-specific death and occurrence of a relapse, respectively. In the PCa subgroup with negative CK20 staining, GP88 positivity was associated with a 1.8-fold (p = 0.018) and a 2.8-fold increased risk for death and disease-specific death (p = 0.028). Altogether, GP88 protein positivity appears to be an independent prognostic factor for PCa patients
CCL2 Expression in Tumor Cells and Tumor-Infiltrating Immune Cells Shows Divergent Prognostic Potential for Bladder Cancer Patients Depending on Lymph Node Stage
Bladder cancer (BCa) is the ninth most commonly diagnosed cancer worldwide. Although there are several well-established molecular and immunological classifications, markers for tumor cells and immune cells that are associated with prognosis are still needed. The chemokine CC motif ligand 2 (CCL2) could be such a marker. We analyzed the expression of CCL2 by immunohistochemistry (IHC) in 168 muscle invasive BCa samples using a tissue microarray. Application of a single cut-off for the staining status of tumor cells (TCs; positive vs. negative) and immune cells (ICs; ≤6% of ICs vs. >6% of ICs) revealed 57 cases (33.9%) and 70 cases (41.7%) with CCL2-positive TCs or ICs, respectively. IHC results were correlated with clinicopathological and survival data. Positive CCL2 staining in TCs was associated with shorter overall survival (OS), disease-specific survival (DSS), and relapse-free survival (RFS) (p = 0.004, p = 0.036, and p = 0.047; log rank test) and appeared to be an independent prognostic factor for OS (RR = 1.70; p = 0.007; multivariate Cox’s regression analysis). In contrast, positive CCL2 staining in the ICs was associated with longer OS, DSS, and RFS (p = 0.032, p = 0.001, and p = 0.001; log rank test) and appeared to be an independent prognostic factor for DSS (RR = 1.77; p = 0.031; multivariate Cox’s regression analysis). Most interestingly, after separating the patients according to their lymph node status (N0 vs. N1+2), CCL2 staining in the ICs was differentially associated with prognosis. In the N0 group, CCL2 positivity in the ICs was a positive independent prognostic factor for OS (RR = 1.99; p = 0.014), DSS (RR = 3.17; p = 0.002), and RFS (RR = 3.10; p = 0.002), whereas in the N1+2 group, CCL2 positivity was a negative independent factor for OS (RR = 3.44; p = 0.019)) and RFS (RR = 4.47; p = 0.010; all multivariate Cox’s regression analyses). In summary, CCL2 positivity in TCs is a negative prognostic factor for OS, and CCL2 can mark ICs that are differentially associated with prognosis depending on the nodal stage of BCa patients. Therefore, CCL2 staining of TCs and ICs is suggested as a prognostic biomarker for BCa patients
Macrophage and T-Cell Infiltration and Topographic Immune Cell Distribution in Non-Melanoma Skin Cancer of the Head and Neck
Non-melanoma skin cancer (NMSC) is a heterogeneous tumor entity that is vastly determined by age and UV-light exposure leading to a great mutational burden in cancer cells. However, the success of immune checkpoint blockade in advanced NMSC and the incidence and disease control rates of NMSC in organ transplant recipients compared to immunologically uncompromised patients point toward the emerging importance of the immunologic activity of NMSC. To gain first insight into the role of T-cell and macrophage infiltration in NMSC of the head and neck and capture their different immunogenic profiles, which appear to be highly relevant for the response to immunotherapy, we conducted a whole slide analysis of 107 basal cell carcinoma (BCC)Â samples and 117 cutaneous squamous cell carcinoma (cSCC) samples. The CD8+ and CD68+ immune cell expression in both cancer types was evaluated by immunohistochemistry and a topographic distribution profile, and the proportion of both cell populations within the two tumor entities was assessed. The results show highly significant differences in terms of CD8+ T-cell and CD68+ macrophage infiltration in BCC and cSCC and indicate cSCC as a highly immunogenic tumor. Yet, BCC presents less immune cell infiltration; the relation between the immune cells compared to cSCC does not show any significant difference. These findings help explain disparities in local aggressiveness, distant metastasis, and eligibility for immune checkpoint blockade in both tumor entities and encourage further research
Identification of Predictive Markers for Response to Neoadjuvant Chemoradiation in Rectal Carcinomas by Proteomic Isotope Coded Protein Label (ICPL) Analysis
Neoadjuvant chemoradiation (nCRT) is an established procedure in stage union internationale contre le cancer (UICC) II/III rectal carcinomas. Around 53% of the tumours present with good tumor regression after nCRT, and 8%-15% are complete responders. Reliable selection markers would allow the identification of poor or non-responders prior to therapy. Tumor biopsies were harvested from 20 patients with rectal carcinomas, and stored in liquid nitrogen prior to therapy after obtaining patients’ informed consent (Erlangen-No.3784). Patients received standardized nCRT with 5-Fluoruracil (nCRT I) or 5-Fluoruracil ± Oxaliplatin (nCRT II) according to the CAO/ARO/AIO-04 protocol. After surgery, regression grading (Dworak) of the tumors was performed during histopathological examination of the specimens. Tumors were classified as poor (Dworak 1 + 2) or good (Dworak 3 + 4) responders. Laser capture microdissection (LCM) for tumor enrichment was performed on preoperative biopsies. Differences in expressed proteins between poor and good responders to nCRT I and II were identified by proteomic analysis (Isotope Coded Protein Label, ICPL™) and selected markers were validated by immunohistochemistry. Tumors of 10 patients were classified as histopathologically poor (Dworak 1 or 2) and the other 10 tumor samples as histopathologically good (Dworak 3 or 4) responders to nCRT after surgery. Sufficient material in good quality was harvested for ICPL analysis by LCM from all biopsies. We identified 140 differentially regulated proteins regarding the selection criteria and the response to nCRT. Fourteen of these proteins were synchronously up-regulated at least 1.5-fold after nCRT I or nCRT II (e.g., FLNB, TKT, PKM2, SERINB1, IGHG2). Thirty-five proteins showed a complete reciprocal regulation (up or down) after nCRT I or nCRT II and the rest was regulated either according to nCRT I or II. The protein expression of regulated proteins such as PLEC1, TKT, HADHA and TAGLN was validated successfully by immunohistochemistry. ICPL is a valid method to identify differentially expressed proteins in rectal carcinoma tissue between poor vs. good responders to nCRT. The identified protein markers may act as selection criteria for nCRT in the future, but our preliminary findings must be reproduced and validated in a prospective cohort
miRNA Expression Characterizes Histological Subtypes and Metastasis in Penile Squamous Cell Carcinoma
Although microRNAs are described as promising biomarkers in many tumor types, little
is known about their role in PSCC. Thus, we attempted to identify miRNAs involved in tumor
development and metastasis in distinct histological subtypes considering the impact of HPV infection.
In a first step, microarray analyses were performed on RNA from formalin-fixed, paraffin-embedded
tumor (22), and normal (8) tissue samples. Microarray data were validated for selected miRNAs by
qRT-PCR on an enlarged cohort, including 27 tumor and 18 normal tissues. We found 876 significantly
differentially expressed miRNAs (p ≤ 0.01) between HPV-positive and HPV-negative tumor samples
by microarray analysis. Although no significant differences were detected between normal and tumor
tissue in the whole cohort, specific expression patterns occurred in distinct histological subtypes,
such as HPV-negative usual PSCC (95 differentially expressed miRNAs, p ≤ 0.05) and HPV-positive
basaloid/warty subtypes (247 differentially expressed miRNAs, p ≤ 0.05). Selected miRNAs were
confirmed by qRT-PCR. Furthermore, microarray data revealed 118 miRNAs (p ≤ 0.01) that were
significantly differentially expressed in metastatic versus non-metastatic usual PSCC. The lower
expression levels for miR-137 and miR-328-3p in metastatic usual PSCC were validated by qRT-PCR.
The results of this study confirmed that specific miRNAs could serve as potential diagnostic and
prognostic markers in single PSCC subtypes and are associated with HPV-dependent pathways
- …