4 research outputs found

    Anaerobic granular sludge and zero valent scrap iron (ZVSI) pre-treated with green tea as a sustainable system for conversion of CO2 to CH4

    No full text
    Global climate change is a worldwide concern that requires the dramatic reduction of greenhouse gases. Innovation in sustainable technologies for CO2 utilization to other high value products is therefore an emerging and rising field. It was found that CO2 as a sole carbon source can be converted to CH4 (higher than 97%) in a system consisted of anaerobic granular sludge, water and zero valent scrap iron. In this system (zero valent scrap iron, anaerobic granular sludge and CO2), pre-exposure of zero valent scrap iron to green tea resulted in a higher conversion rate and total CH4 production compared to bare zero valent scrap iron response. At the abiotic system (no anaerobic sludge) the zero valent scrap iron pre-treated with green tea also showed around 10% higher H2 production as well as higher final pH compared to zero valent scrap iron. The dominant crystalline product of the process both at the abiotic and at the biological system was siderite (FeCO3). It is likely that the formation of siderite on the zero valent scrap iron outer surface have reduced the amount of H2 release from zero valent scrap iron, shielding the substrate for methanogens. The presence of green tea compounds can form an iron-tannate complex with iron ions and this can possibly decrease or slow down the siderite layer, as a result more H2 was released when zero valent scrap iron was pre-exposed to green tea. Anaerobic spent filtered media was independently added to zero valent scrap iron to examine the effect of extracellular enzymes, however slight increase of the H2 production rate was found. The examined system combines potential solutions for two environmental problems; production of siderite derived from zero valent scrap iron for environmental applications and utilization of CH4 generated from CO2 for energy purposes

    Identification of exosomal muscle-specific miRNAs in serum of myotonic dystrophy patients relating to muscle disease progress

    Get PDF
    Myotonic dystrophy type 1 (DM1) is the most common form of adult-onset muscular dystrophy, which is characterised by progressive muscle wasting and the discovery of reliable blood-based biomarkers could be useful for the disease progress monitoring. There have been some reports showing that the presence of specific miRNAs in blood correlates with DM1. In one of these, our group identified four muscle-specific miRNAs, miR-1, miR-133a, miR-133b and miR-206, which correlated with the progression of muscle wasting observed in DM1 patients. The levels of the four muscle-specific miRNAs were elevated in the serum of DM1 patients compared to healthy participants and were also elevated in the serum of progressive muscle wasting DM1 patients compared to disease-stable DM1 patients. The aim of this work was to characterise the ontology of these four muscle-specific miRNAs in the blood circulation of DM1 patients. Here we show that the four muscle-specific miRNAs are encapsulated within exosomes isolated from DM1 patients. Our results show for the first time, the presence of miRNAs encapsulated within exosomes in blood circulation of DM1 patients. More interestingly, the levels of the four exosomal muscle-specific miRNAs are associated with the progression of muscle wasting in DM1 patients. We propose that exosomal muscle-specific miRNAs may be useful molecular biomarkers for monitoring the progress of muscle wasting in DM1 patients. There has been a growing interest regarding the clinical applications of exosomes and their role in prognosis and therapy of various diseases and the above results contribute towards this way

    Serum miRNAs as biomarkers for the rare types of muscular dystrophy

    No full text
    Muscular dystrophies are a group of disorders that cause progressive muscle weakness. There is an increasing interest for the development of biomarkers for these disorders and specifically for Duchene Muscular Dystrophy. Limited research however, has been performed on the biomarkers' development for the most rare muscular dystrophies, like the Facioscapulohumeral Muscular Dystrophy, Limb-Girdle Muscular Dystrophy and Myotonic Dystrophy type 2. Here, we aimed to identify novel serum-based miRNA biomarkers for these rare muscular dystrophies, through high-throughput next-generation RNA sequencing. We identified many miRNAs that associate with muscular dystrophy patients compared to controls. Based on a series of selection criteria, the two best candidate miRNAs for each of these disorders were chosen and validated in a larger number of patients. Our results showed that miR-223-3p and miR-206 are promising serum-based biomarkers for Facioscapulohumeral Muscular Dystrophy type 1, miR-143-3p and miR-486-3p for Limb-Girdle Muscular Dystrophy type 2A whereas miR-363-3p and miR-25-3p associate with Myotonic Dystrophy type 2. Some of the identified miRNAs were significantly elevated in the serum of the patients compared to controls, whereas some others were lower. In conclusion, we provide new evidence that certain circulating miRNAs may be used as biomarkers for three types of rare muscular dystrophies.This Project (POST-DOC/0916/0235) was co-financed by the European Regional Development Fund and the Republic of Cyprus through the Research and Innovation Foundation. A.C.K, A.O., M.T. and G.M.S. were funded by the European Commission Research Executive Agency Grant BIORISE [number 669026], under the Spreading Excellence, Widening Participation, Science with and for Society Framework. H.L. receives support from the Canadian Institutes of Health Research (Foundation Grant FDN-167281), the Canadian Institutes of Health Research and Muscular Dystrophy Canada (Network Catalyst Grant for NMD4C), the Canada Foundation for Innovation (CFI-JELF 38412), and the Canada Research Chairs program (Canada Research Chair in Neuromuscular Genomics and Health, 950-232279

    Identification of exosomal muscle-specific miRNAs in serum of myotonic dystrophy patients relating to muscle disease progress

    No full text
    Myotonic dystrophy type 1 (DM1) is the most common form of adult-onset muscular dystrophy, which is characterised by progressive muscle wasting and the discovery of reliable blood-based biomarkers could be useful for the disease progress monitoring. There have been some reports showing that the presence of specific miRNAs in blood correlates with DM1. In one of these, our group identified four muscle-specific miRNAs, miR-1, miR-133a, miR-133b and miR-206, which correlated with the progression of muscle wasting observed in DM1 patients. The levels of the four muscle-specific miRNAs were elevated in the serum of DM1 patients compared to healthy participants and were also elevated in the serum of progressive muscle wasting DM1 patients compared to disease-stable DM1 patients. The aim of this work was to characterise the ontology of these four muscle-specific miRNAs in the blood circulation of DM1 patients. Here we show that the four muscle-specific miRNAs are encapsulated within exosomes isolated from DM1 patients. Our results show for the first time, the presence of miRNAs encapsulated within exosomes in blood circulation of DM1 patients. More interestingly, the levels of the four exosomal muscle-specific miRNAs are associated with the progression of muscle wasting in DM1 patients. We propose that exosomal muscle-specific miRNAs may be useful molecular biomarkers for monitoring the progress of muscle wasting in DM1 patients. There has been a growing interest regarding the clinical applications of exosomes and their role in prognosis and therapy of various diseases and the above results contribute towards this way
    corecore