10 research outputs found
Spray Forming of al Alloys: experiment and theory
Close coupled gas atomization has been studied. Pitot tube gas flow measurements support a postulate of transition from an initial sonic to a supersonic and a final sonic state along the convergence region of the jets. Predictions of the d50 median diameter utilizing a two phase model for primary and secondary break up correlate strongly with experimental results from He-atomized Al alloys by a factor of 0.8216
Quantum chemical calculations predict biological function: the case of T cell receptor interaction with a peptide/MHC class I
A combination of atomic correlation statistics and quantum chemical calculations are shown to predict biological function. In the present study, various antigenic peptide-Major Histocompatibility Complex (pMHC) ligands with near-identical stereochemistries, in complexation with the same T cell receptor (TCR), were found to consistently induce distinctly different quantum chemical behavior, directly dependent on the peptide’s electron spin density and intrinsically expressed by the protonation state of the peptide’s N-terminus. Furthermore, the cumulative coordination difference of any variant in respect to the native peptide was found to accurately reflect peptide biological function and immerges as the physical observable which is directly related to the immunological end-effect of pMHC-TCR interaction
The Effect of Indium Content on the Atomic Environment and Cluster Stability of GeSe4Inx=10,15 Glasses
The atomic environments of two chalcogenide glasses, with compositions GeSe4In10 and GeSe4In15, were studied via Reverse Monte Carlo and Density Functional Theory. Indium content demoted Ge–Se bonding in favor of Se-In while the contribution of Se–Se in the first coordination shell order was faint. Upon transition to the richer In glass, there was formation of rich Ge-centered clusters at radial distances further than 4 Å from the RMC box center, which was taken to signify a reduction of Ge–Se interactions. Cluster coordination by Se promoted stability while, very conclusively, In coordination lowered cluster stability by intervening in the Ge–Se and Se–Se networks
Data from: Pragmatic analysis of the electric submerged arc furnace continuum
A transient mathematical model was developed for the description of fluid flow, heat transfer and electromagnetic phenomena involved in the production of ferronickel in electric arc furnaces. The key operating variables considered were the thermal and electrical conductivity of the slag and the shape, immersion depth and applied electric potential of the electrodes. It was established that the principal stimuli of the velocities in the slag bath were the electric potential and immersion depth of the electrodes and the thermal and electrical conductivities of the slag. Additionally, it was determined that, under the set of operating conditions examined, the maximum slag temperature ranged between 1756 and 1825 K, which is in accordance with industrial measurements. Moreover, it was affirmed that contributions to slag stirring due to Lorentz forces and momentum forces due to the release of carbon monoxide bubbles from the electrode surface were negligibl