1,928 research outputs found

    The cosmic ray differential diurnal variation dependences on the zenith angle and the geomagnetic disturbance

    Get PDF
    Simultaneous and continuous muon measurements in two opposite azimuthal directions under equal zenith angles demonstrated the importance of this method for cosmic ray diurnal variation investigations. Lately these measurements were extended by means of improved telescopes. The obtained cosmic ray diurnal variations were presented as intensity differential curves. Theoretical investigations connected the properties of these curves with some interplanetary spece parameters. The harmonics of these curves were interpreted physically. Some order difference curves were introduced. In earlier works some dependences between the parameters characterizing the first and the second harmonics of the differential intensity curves and the geomagnetic activity were found. Then all measurements were carried out under only one zenith angle. The results of investigations of similar dependences using data of simultaneous measurements under three different zenith angles are presented

    A Unified Conformal Field Theory Description of Paired Quantum Hall States

    Full text link
    The wave functions of the Haldane-Rezayi paired Hall state have been previously described by a non-unitary conformal field theory with central charge c=-2. Moreover, a relation with the c=1 unitary Weyl fermion has been suggested. We construct the complete unitary theory and show that it consistently describes the edge excitations of the Haldane-Rezayi state. Actually, we show that the unitary (c=1) and non-unitary (c=-2) theories are related by a local map between the two sets of fields and by a suitable change of conjugation. The unitary theory of the Haldane-Rezayi state is found to be the same as that of the 331 paired Hall state. Furthermore, the analysis of modular invariant partition functions shows that no alternative unitary descriptions are possible for the Haldane-Rezayi state within the class of rational conformal field theories with abelian current algebra. Finally, the known c=3/2 conformal theory of the Pfaffian state is also obtained from the 331 theory by a reduction of degrees of freedom which can be physically realized in the double-layer Hall systems.Comment: Latex, 42 pages, 2 figures, 3 tables; minor corrections to text and reference

    Computational equivalence of the two inequivalent spinor representations of the braid group in the Ising topological quantum computer

    Full text link
    We demonstrate that the two inequivalent spinor representations of the braid group \B_{2n+2}, describing the exchanges of 2n+2 non-Abelian Ising anyons in the Pfaffian topological quantum computer, are equivalent from computational point of view, i.e., the sets of topologically protected quantum gates that could be implemented in both cases by braiding exactly coincide. We give the explicit matrices generating almost all braidings in the spinor representations of the 2n+2 Ising anyons, as well as important recurrence relations. Our detailed analysis allows us to understand better the physical difference between the two inequivalent representations and to propose a process that could determine the type of representation for any concrete physical realization of the Pfaffian quantum computer.Comment: 9 pages, 2 figures, published versio

    The influence of massive stars in the interstellar medium of IC 1613: the supernova remnant S8 and the nebula S3 associated with a WO star

    Get PDF
    We present a detailed kinematical analysis of two selected nebulae in the Local Group irregular galaxy IC 1613. The nebulae are: S8, the only known supernova remnant in this galaxy, and S3, a Wolf-Rayet nebula associated with the only WO star in this galaxy. For S8, we have obtained and analyzed its radial velocity field, where we found complex profiles which can be fitted by several velocity components. These profiles also show the presence of high velocity, low density gas. From this, we have obtained the expansion velocity, estimated the preshock density and calculated the basic kinematical parameters of this SNR. We suggest that in S8 we are seing a SNR partially hidden by dust. This suggestion comes from the fact that the SNR is located between two superbubbles where a ridge of obscured material unveils the existence of dust. Moreover, we show that this hypothesis prevails when energetic arguments are taken into account. In the case of S3, this nebula shows bipolar structure. By means of its kinematics, we have analyzed its two lobes, the ``waist'', as well as its relation with the nearest superbubbles. For the first time we are able to see closed the NW lobe, showing a clover leaf shape. This fact allows a better quantitative knowledge of the nebula as a whole. Furthermore, we found evidence of an expansion motion in the NW lobe. In the light of our results, we can express that these nebulae are the product of very massive stellar evolution. It is surprising the influence these stars still have in shaping their surrounding gas, and on the energy liberation towards the interstellar medium of this galaxy.Comment: Accepted for publication in the Astronomical Journal, July issue. 11 pages, 12 figures. High resolution figures can be found at http://www.inaoep.mx/~mago/PAPERS/AJ

    Chiral persistent currents and magnetic susceptibilities in the parafermion quantum Hall states in the second Landau level with Aharonov-Bohm flux

    Full text link
    Using the effective conformal field theory for the quantum Hall edge states we propose a compact and convenient scheme for the computation of the periods, amplitudes and temperature behavior of the chiral persistent currents and the magnetic susceptibilities in the mesoscopic disk version of the Z_k parafermion quantum Hall states in the second Landau level. Our numerical calculations show that the persistent currents are periodic in the Aharonov-Bohm flux with period exactly one flux quantum and have a diamagnetic nature. In the high-temperature regime their amplitudes decay exponentially with increasing the temperature and the corresponding exponents are universal characteristics of non-Fermi liquids. Our theoretical results for these exponents are in perfect agreement with those extracted from the numerical data and demonstrate that there is in general a non-trivial contribution coming from the neutral sector. We emphasize the crucial role of the non-holomorphic factors, first proposed by Cappelli and Zemba in the context of the conformal field theory partition functions for the quantum Hall states, which ensure the invariance of the annulus partition function under the Laughlin spectral flow.Comment: 14 pages, RevTeX4, 7 figures (eps

    DeepX: A Software Accelerator for Low-Power Deep Learning Inference on Mobile Devices

    Get PDF
    © 2016 IEEE. Breakthroughs from the field of deep learning are radically changing how sensor data are interpreted to extract the high-level information needed by mobile apps. It is critical that the gains in inference accuracy that deep models afford become embedded in future generations of mobile apps. In this work, we present the design and implementation of DeepX, a software accelerator for deep learning execution. DeepX signif- icantly lowers the device resources (viz. memory, computation, energy) required by deep learning that currently act as a severe bottleneck to mobile adoption. The foundation of DeepX is a pair of resource control algorithms, designed for the inference stage of deep learning, that: (1) decompose monolithic deep model network architectures into unit- blocks of various types, that are then more efficiently executed by heterogeneous local device processors (e.g., GPUs, CPUs); and (2), perform principled resource scaling that adjusts the architecture of deep models to shape the overhead each unit-blocks introduces. Experiments show, DeepX can allow even large-scale deep learning models to execute efficently on modern mobile processors and significantly outperform existing solutions, such as cloud-based offloading

    Gradient-free quantum optimization on NISQ devices

    Full text link
    Variational Quantum Eigensolvers (VQEs) have recently attracted considerable attention. Yet, in practice, they still suffer from the efforts for estimating cost function gradients for large parameter sets or resource-demanding reinforcement strategies. Here, we therefore consider recent advances in weight-agnostic learning and propose a strategy that addresses the trade-off between finding appropriate circuit architectures and parameter tuning. We investigate the use of NEAT-inspired algorithms which evaluate circuits via genetic competition and thus circumvent issues due to exceeding numbers of parameters. Our methods are tested both via simulation and on real quantum hardware and are used to solve the transverse Ising Hamiltonian and the Sherrington-Kirkpatrick spin model.Comment: 13 pages, 6 figures, comments welcome
    • …
    corecore