
DeepX: A Software Accelerator for Low-Power
Deep Learning Inference on Mobile Devices

Nicholas D. Lane‡, Sourav Bhattacharya‡, Petko Georgiev†

Claudio Forlivesi‡, Lei Jiao‡, Lorena Qendro∗, and Fahim Kawsar‡
‡Bell Labs, †University of Cambridge, ∗University of Bologna

Abstract—Breakthroughs from the field of deep learning are
radically changing how sensor data are interpreted to extract
the high-level information needed by mobile apps. It is critical
that the gains in inference accuracy that deep models afford
become embedded in future generations of mobile apps. In this
work, we present the design and implementation of DeepX, a
software accelerator for deep learning execution. DeepX signif-
icantly lowers the device resources (viz. memory, computation,
energy) required by deep learning that currently act as a severe
bottleneck to mobile adoption. The foundation of DeepX is a
pair of resource control algorithms, designed for the inference
stage of deep learning, that: (1) decompose monolithic deep
model network architectures into unit-blocks of various types,
that are then more efficiently executed by heterogeneous local
device processors (e.g., GPUs, CPUs); and (2), perform principled
resource scaling that adjusts the architecture of deep models
to shape the overhead each unit-blocks introduces. Experiments
show, DeepX can allow even large-scale deep learning models to
execute efficiently on modern mobile processors and significantly
outperform existing solutions, such as cloud-based offloading.

I. INTRODUCTION

Today the most accurate and robust statistical models for
inferring many common user behaviors and context are built
on algorithms from deep learning [1] – an innovative area of
machine learning that is rapidly changing how noisy complex
data from the real world is modeled. The range of inference
tasks impacted by deep learning includes the recognition of:
faces [2], emotions [3], objects [4] and words [5]. However
surprisingly, even though such inferences are critical to many
mobile apps (e.g., assistants like Siri, or mHealth apps [42])
– very few of them have adopted deep learning techniques.

Mainstream mobile usage of deep learning is primarily
isolated to only to a few global-scale software companies (such
as Google and Microsoft), that have the resources to build
proprietary, and largely cloud powered systems (with limited
mobile computation), for specific high-value scenarios like
speech recognition [6]. One of the key reasons for this situation
is the shear complexity and associated heavy computation,
memory and energy demands of the deep learning models
themselves. For example, Deep Neural Networks [7] (DNNs)
and Convolutional Neural Networks [8] (CNNs) routinely
use networks containing thousands of interconnected units,
and total millions of parameters [2], [4]. As a result, the
majority of mobile sensor-based apps, both commercially and
academically, rely on classifiers with lower resource overhead
(such as Decision Trees and Gaussian Mixture Models [9]);

even when they are well known to be inferior to deep learning
techniques.

Existing approaches for mobile deep learning have con-
siderable drawbacks. Offloading inference execution to the
cloud is a natural solution, but is impractical for prolonged
periods (such as, augmented reality or cognitive assistance)
due wireless energy overhead. Furthermore, when network
conditions are poor cloud offloading, and therefore the app
itself, will be unavailable. Operating on local device CPUs
are feasible for some scenarios through handcrafted small
footprint DNNs [11], [12], [43]; but not only does this demand
a high degree of effort and skill, it is also infeasible for the
majority of existing deep learning models [2], [5], [4]. More
importantly, it is these complex models where we see the
transformative leaps in inference accuracy and robustness that
mobile apps desperately need.

The GPUs found in most mobile devices present an attrac-
tive potential solution, especially because they are well suited
to the type of computation common within deep models [13].
However, GPUs can consume mobile battery reserves at an
alarming rate (similar to the cost of the GPS, a notoriously
power hungry sensor). As a result, GPU-only solutions (just
like cloud offloading) are not suitable for apps that either
frequently use inference or continuously require it for long
periods.

In this paper, we take important strides towards removing
the barriers preventing deep learning from being broadly
adopted by mobile and wearable devices. Our central con-
tribution is DeepX – a software accelerator for deep learning
models run on mobile hardware. This accelerator dramatically
lowers resource overhead by leveraging a mix of heteroge-
neous processors (e.g., GPUs, LPUs) present, but seldom
utilized for sensor processing, in mobile SoCs. Each com-
putational unit provides distinct resource efficiencies when
executing different inference phases of deep models. DeepX
allows non-expert developers to exploit these benefits by
simply specifying a deep model to run. But beyond just using
various local processors, DeepX amplifies the advantages they
offer through two inference-time resource control algorithms,
namely: (1) Runtime Layer Compression (RLC) and (2) Deep
Architecture Decomposition (DAD). Through these runtime
algorithms, DeepX can automatically decompose a deep model
across available processors to maximize energy-efficiency and
execution time, within fluctuating mobile resource constraints
such as computation and memory. When necessary, resource

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/384309947?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

overhead is scaled through the novel application of SVD-
based layer compression methods to remove (primarily) any
redundancy from the decomposed model blocks. Importantly,
this enables low-power processors to execute even larger
fractions of the deep model due to the reduction in complexity.
As a result, DeepX enables otherwise impossible combinations
of low-power and high-power (such as GPUs) processors
to service complex deep learning models with acceptable
resource consumption levels. The contributions of this research
include:

∙ The first software-based deep learning accelerator that
makes such models practical on mobile class hardware,
without manual model-specific tuning.

∙ Two novel algorithms – namely, DAD and RLC – that offer
brand new forms of resource control and optimization for
deep learning on mobile platforms.

∙ A proof-of-concept prototype that validates our design. This
prototype also enables a broad evaluation, including com-
parisons to existing solutions using popular deep models.

II. BACKGROUND

We begin with a primer on deep learning methods, before
describing their relationship to mobile apps and highlighting
the opportunities that mobile SoCs offer.

Deep Neural Networks.
As shown in Figure 1, a series of fully-connected layers col-

lectively form a DNN architecture with each layer comprised
by a collection of units (or nodes). Raw data (e.g., audio,
images) initialize the values of the first layer (the input layer).
The output layer (the last layer) corresponds to inference
classes, with units capturing individual inference categories
(e.g., music or cat). Hidden layers are contained between
input and output layers. Collectively, they are responsible for
transforming the state of the input layer into the inference
classes captured in the last layer. Every unit contains an
activation function that determines how to calculate the units’s
own state based on units from the immediately previous layer.
The degree of influence of units between layers vary on a
pairwise basis determined by a weight value. Naturally, the
output of the unit also helps to determine the unit state in the
next layer.

Inference (i.e., classify a sensor input) is performed with
a DNN using a feed-forward algorithm that operates on each
segment of data (an image or audio frame) separately. The
algorithm begins at the input layer and progressively moves
forward layer by layer. At each layer feed-forward updates the
state of each unit one by one. This process terminates once
all units in the output layer are updated. The inferred class
corresponds to the output layer unit with the largest state.

Convolutional Neural Networks . An alternative formulation
of deep learning are CNNs. Primarily, they are used for
vision and image related tasks where are state-of-the-art [8],
although their usage is expanding. A CNN is often composed
of one or more convolutional layers, pooling or sub-sampling

Sensor Data

Output Layer

Inferences

Input Layer

Hidden Layers

Fig. 1: Deep Neural Network

layers, and fully connected layers (with this final layer type
being equivalent to those used in DNNs). The basic idea
in CNN models is to extract simple features from the high
resolution input image (2D data) and then converting them
into more complex features at much coarser resolutions at
the higher layers. This is achieved by first applying various
convolutional filters (with small kernel width) to capture local
data properties. Next follow max/min pooling layers causing
extracted features to be invariant to translations, this also acts
as a form of dimensionality reduction. Often before applying
the pooling, sigmoidal non-linearity and biases are added.

Inference under a CNN proceeds very similarly to that of a
DNN. Again, inference operates only on a single segment of
data at a time. Typically sensor data is first vectorized into two
dimensions (a natural representation for images). Next, these
these data are provided to convolutional layers at the head of
the model architecture. The net effect of convolution layers is
to pre-process the data operating as a series of patches before
arriving at the fully connected feed-forward layers within the
CNN. Inference then proceeds exactly as previously described
for DNNs until ultimately a classification is reached.

Mobile Sensing Apps. Although they come in a variety
of forms and target a wide range of scenarios, the unifying
element between mobile sensing apps is they all involve the
collection and interpretation of sensor data. To accomplish
this they embed machine learning algorithms into their app
designs. DeepX is designed to be used as a black-box by
developers of these mobile apps and provide a replacement
inference execution environment for any deep learning model
they adopt. A key dimension to this problem is the frequency at
which sensor data is collected and processed; sensor apps that
continuously interpret data (e.g., those targeting life-logging or
mHealth) present the most challenging scenario as they may
perform inference multiple times a minute; and therefore per-
inference resource usage must be small if the app is to have
good battery life. Apps that sense less continuously on the
other hand can afford higher per inference costs. However,
deep models need resource optimization before they can even
execute on a mobile platform [43]; many deep models have
memory requirements that are too high for a mobile SoC to
support. Similarly, execution times can easily exceed limits
that are accepted to an app (e.g., 30 seconds), presenting a
problem even if the inference is sporadically activated by the
user throughout the day. One potential solution we propose in
this paper is runtime compression of fully connected deep ar-
chitecture layers to reduce memory requirements and inference
times (see §III-A).

New Processors Emerging on Mobile SoCs. As the SoCs

in mobile devices evolve they are squeezing in an increasingly
wide range of different computational units (GPUs, low-power
CPU cores, multi-core CPUs). Even the Android-based LG G
Watch R [16] includes a Snapdragon 400 [17] that contains a
pairing of DSP and a dual-core CPU. Each processor presents
its own resource profile when performing different types of
computation. This creates different trade-offs for them to
execute portions of a deep model architecture, depending on
layer type or other characteristic. This diversity is relatively
recent for mobile devices and we propose a layer-wise parti-
tioning approach followed by solving an optimization equation
(see §V-A) to decide how this heterogeneity should be best
leveraged under various runtime conditions, e.g., instantaneous
processor loads and memory availabilities. In this work, we
explore this critical question facing the mobile computing
community and explore within it an important aspect, namely:
Can the readily available heterogeneity in mobile SoCs over-
come the daunting resource barriers that currently prevent
deep learning from being adopted in mobile sensing apps? In
the next section, we present our answer.

III. DEEPX DESIGN

Starting in this section, and spanning the three that follow, we
detail DeepX design, algorithms and prototype.

A. Design Principles

We first highlight the key issues underpinning our design.

∙ Runtime Optimization: Various methods for optimizing
deep learning models prior to execution [18], [19], [21]
while useful, are insufficient. Because mobile resources
(especially network connectivity) are unpredictable, even if
a model has been modified to lower resource consumption,
there is always the need for runtime changes. Without
runtime adaption, pre-facto model changes cause resources
under-utilization at times of resource scarcity, and visa
versa.

∙ Do Not Ignore Low-power Processors: Matching the
high computational demands of deep learning inference with
high performance GPUs is a natural solution. It is also a
mistake. Low-power processors (such as LPUs) can be very
efficient at common inference calculations, and because of
their energy efficiency can be better choices than GPUs for
smaller scale DNNs. Moreover, by combining low and high
energy processors, larger models can be executed still within
execution time constraints, but at a reduced energy budget
than high energy processors alone.

∙ Broad Deep Learning Support: The success of deep
learning has resulted in thousands of model designs for
many inference tasks. A natural narrow waist of com-
patibility is to support both CNNs and DNNs, the two
most popular deep learning algorithms today; doing so
is sufficient to run thousands of existing deep models.
However, other deep model varieties, such as RNNs that
include sequential structure, are not currently supported.

∙ Principled Scaling of Model Resources: Adopting mobile
techniques already used to manage the system resources
of shallow models, such as personalization [22] or context
adaption [23] is attractive. But these techniques, not built
for deep learning, run the risk of damaging a deep model.
Instead systems should build upon principled deep learning
specific techniques (e.g., [18], [19], [21]).

B. Algorithms

DeepX aims to radically reduce mobile resource use (viz.
memory, computation and energy), in addition to the execution
time, of performing inference with large-scale deep learning
models by exploiting a mix of network-based computation and
heterogeneous local processors. Towards this goal, we propose
two novel techniques:

∙ Runtime Layer Compression (RLC): A building block
to optimizing mobile resource usage for deep learning is an
ability to shape and control them. But existing approaches,
such as those of model compression, focus on the training
phase of deep learning models, rather than the inference.
RLC provides runtime control of the memory and com-
putation (along with energy as a side-effect) consumed
during the inference phase by extending model compression
principles. To provide error protection, the design seeks
more conservative opportunities in redundant aspects of
model representation, rather than truly simplify the model.
Furthermore, by focusing on the layer level (instead of
whole model), changes to a deep learning model are isolated
to only where they are required. The design of RLC ad-
dresses significant obstacles such as: low overhead operation
suitable for runtime use, the need to retrain, and the need for
local test datasets to assess the impact of model architecture
changes.

∙ Deep Architecture Decomposition (DAD): A typical deep
model is comprised of an architecture of many layers and
thousands of units. DAD efficiently identifies unit-blocks
of this architecture and creates a “decomposition plan”
that allocates blocks to local and remote processors; such
plans maximize resource utilization and seek to satisfy user
performance goals. Existing cloud offloading algorithms can
not identify the best optimization opportunities as they lack
an understanding of deep learning algorithms. Distributed
deep learning frameworks [13] focus on the training of
algorithms and do not mix consideration for remote com-
putation and local processors, that for example, operate
at very distinct time-scales. DAD overcomes challenges
such as a potentially prohibitive search space and inference
and considering hardware heterogeneity and de- and re-
composition overhead.

Through the combination of these two techniques, DeepX per-
forms inference across a standard deep learning model with an
innovative use of resources. Figure 2 provides a representative
example of DeepX inference in action. A deep model that
otherwise is too resource intensive for a mobile device to
support in isolation, is shown to be decomposed into two unit-

Original
Deep Model

Runtime Layer
Compression

Deep Architecture
Decomposition

GPU

CPU

Later model
layers compressed
reducing resources

(e.g., memory)
they require

Fig. 2: Representative example of model decomposition and com-
pression in operation under DeepX

blocks. The mobile CPU (or another constrained processor)
supports initial model layers that have been compacted to meet
its memory and computational limits. The remaining majority
of model layers are then completed by GPU computation.
Note, the model is compressed only where needed by resource
constraints, instead of compression being applied across all
layers. Without any compression, the CPU computation at the
mobile would not have been utilized and thus wasted, for
reasons as simple as a lack of local memory. Instead a better
balance of layer compression and energy is reached by less
compression and initial use of the CPU processor.

C. Proof-of-Concept

To demonstrate and evaluate the algorithms of RLC and DAD,
and the end-to-end operation of DeepX, we develop a proof-
of-concept system shown in Figure 3. We now briefly describe
components of this system and how they interact within the
context of a workflow.

Model Interpreter. Any already trained DNN or CNN model
can be provided to DeepX. Model specifications come from
developers who then incorporate the use of DeepX into the
logic of a mobile or wearable app. The specification of the
model describes not only the model (e.g., layer types, weight
matrices, activation functions) but also information needed
for inference to be performed, such as sensor type (e.g.,
microphone) and pre-processing steps that are applied to the
data.

Performance Targets. The default semantics of DeepX are
simple. It attempts to lower resources as much as possible
while respecting two bounding factors. First, a single inference
execution is never longer than 5 seconds, and second: the
reconstruction error of any model compression (described in
§IV-B) corresponds to around a 5% fall in model accuracy.
Developers are free to modify these two parameters, although
we expect in practice only the inference execution limit is
changed. For example, an inference in response to user input
may be set to 250 msec. as the user is waiting. In contrast,
other inferences used for long-term tracking of activity is less
time sensitive and so further resource savings can be sought.
Furthermore, we expect the reconstruction error to be seldom
changed as we have already set this to a very conservative
value to reduce the chance any noticeable accuracy drops
may occur. This behavior, and response to user inputs, is
determined by a threshold described in §V-A.

Inference Interface. Requests to perform an inference using
an earlier provided model are made via an API. A developer
then includes an API call within a mobile app. If an app,
for instance, wants to authenticate a user it can use a face
recognition model like DeepFace [2]. The model reports the
recognition result via the interface.

Execution Planner. Each time an inference is requested
DeepX determines a new plan for execution. This enables the
execution plan to be optimized for the current local device
and network resource conditions. Determining this plan is the
responsibility of DAD that works closely with RLC in this
process. DAD examines candidate decomposition plans of the
inference model and possible allocations of unit-blocks (i.e.,
subsections of the whole model) to all available processors.
RLC allows DAD to consider an even wider set of possible
execution plans by performing model compression to unit-
blocks. Not only does this allow different trade-offs to be
explored as the resources used by different blocks can be
adjusted; but it also expands the possible matching of unit-
blocks to processors, for example, by reducing the required
memory of a unit-blocks to a level a processor can support.
DAD also considers a variety of other factors, not only the
current performance objectives; but also processor migration
overhead and how certain layers are best computed by specific
processor types. Of course, to arrive at a final inference result
decomposed unit-blocks must have their results reassembled
(see §V-B). This is also the responsibility of the Planner.

Resource Availability. Selection of a decomposition plan is
strongly influenced by the current available resources. Via OS
hooks DeepX receives current resource usage levels before
performing an inference. But better decisions can be made
using accurate predictions of resource load, and planing for
predicted levels. Many approaches to resource prediction exist
(e.g., [24], [25]) and could be adopted without changes to the
design.

Resource Consumption. Decisions by DAD consider, of
course, the resource overhead of possible decomposition plans.
Doing this before execution requires estimation; this is done
through the use of a coarse prediction model. Because deep
learning inference is highly structured it is more predictable
than arbitrary code. Even more flexible examples of mobile
workloads have proven to be highly predicable [26]. DeepX
also verifies predictions, and update its prediction model, by

Execution Planner

Applications

Executing Deep Model

Resource Estimator

Resource Monitor

CPU GPU LPU …..

Inference Hosts

Model Interpreter Inference Interface

Fig. 3: DeepX Proof-of-Concept System

Before
Layer Compression

Per layer operations
are simplified through

the introduction of
each new layer

After
Layer Compression

SVD
dynamically
generated layer

Fig. 4: Illustration of the RLC technique. Layer compression is shown
taking place; the new generated layer is inserted into between two
prior adjacent layers from the original model.

observing actual costs after a plan is selected.

Inference Host. Supporting efficient inference operations
across many processor types force the use of many host
implementations that include platform specific optimizations.
Examples include: implementations conscious of processor ar-
chitecture (decisions over fixed or floating point, awareness of
cache lines) and optimized network communication (attention
to the payload).

IV. RUNTIME LAYER COMPRESSION

Through RLC, DeepX can scale the complexity of individual
model layers and in doing so it controls the memory computa-
tion and energy consumed by a layer during inference. DAD
(see §V) strongly relies on this capability when considering
possible decomposition plans for deep models; especially
when plans include local processors with otherwise insufficient
resources

Overview. There are two key components to RLC. First, a
dimensionality reduction process (§IV-A) used to lower the
computations required as one layer feeds into the next. Second,
an estimator (§IV-B) that regulates the level of dimensionality
reduction to be applied before model accuracy is effected
beyond the intent of the DeepX user. The input to RLC
is: (1) a pair of adjacent layers (𝐿 and 𝐿 + 1) from the
model to be executed (as represented by weight matrices
that describe their interaction); and (2), an error limit used
by the estimator that describes the observed reconstruction
error after dimensionality reduction is applied. Both inputs are
provided by the DAD which also receives the output of RLC;
specifically a replacement for weight matrix between layer 𝐿
and 𝐿+1 that requires fewer parameters and less computation.

A. Layer Compression

Existing approaches (e.g., [18], [19], [21]) for simplifying a
model require it to be re-trained as part of the process. Re-
training is not practical during RLC because the training of
deep learning models is extremely resource intensive1 and
therefore is not feasible to perform every time the model
performs an inference (in order to optimize its execution
relative to available resource). We adopt the previously used
method of SVD-based layer compression (such as [21]) in our
design of RLC; however, our usage without training data, and
for the purposes of controlling the usage of system resources
is novel.

1 The training of deep architectures is orders of magnitude more resource
intensive than the inference stage DeepX seeks to improve.

As a result, RLC is designed based on layer-oriented model
reduction techniques specific to deep architectures that is
commonly used to speed-up model training, and that impor-
tantly does not require retraining. As illustrated in Figure 4,
RLC adapts this approaches to control resource consumption
at inference time. First the weight matrix 𝑊𝐿+1

𝑚×𝑛 for two
adjacent layers (𝐿 and 𝐿+1) with 𝑚 and 𝑛 units respectively
undergoes singular value decomposition (SVD). Under SVD
decomposition, the weight matrix can be represented as:

𝑊𝐿+1
𝑚×𝑛 = 𝑈𝑚×𝑚 Σ𝑚×𝑛 𝑉

𝑇
𝑛×𝑛 (1)

Further, the weight matrix can be approximated by keeping 𝑐
biggest singular values, i.e.,:

�̂�𝐿+1
𝑚×𝑛 = 𝑈𝑚×𝑐 Σ𝑐×𝑐 𝑉

𝑇
𝑐×𝑛 (2)

�̂�𝐿+1
𝑚×𝑛 = 𝑈𝑚×𝑐 𝑁

𝑇
𝑐×𝑛 (3)

Next, the weight matrix 𝑊𝐿+1
𝑚×𝑛 is replaced by the product

of new matrices 𝑈𝑚×𝑐 and 𝑁𝑇
𝑐×𝑛 , which is achieved by

introducing a new layer 𝐿′ with 𝑐 ≪ 𝑚,𝑛 units between layer
𝐿 and 𝐿+1. Because 𝐿 and 𝐿+1 units are fully connected, the
introduction of 𝐿′ causes the number of pairwise calculations
and weight parameters to fall dramatically – from 𝑚𝑛 to
(𝑚+ 𝑛)× 𝑐, this in turn translates into both a lower memory
requirements and lower computational load. An overview of
the SVD-based compression of a deep architecture layer is
given in Figure 4. Although SVD is often used by other
training-time model compression approaches, our core novelty
is in the use of this technique to: (1) dynamically scale
resources according to availability, and (2) develop a practical
version of this technique that can be applied at runtime (and
not requiring, for instance, training data to be available).

Prior empirical and theoretical results support the RLC de-
sign in two important ways. First, even though the architecture
of the model is changed the impact on downstream layers,
trained assuming the original architecture, does not typically
result in large increases in error. Thus, if the product of 𝑈𝑚×𝑐

and 𝑁𝑇
𝑐×𝑛 matrices accurately approximates 𝑊𝑚×𝑛, then the

functional property of the original model stays similar. Second,
in fact considerable amount of compression are possible, if
carefully applied to certain layers, before significant accuracy
declines are observed (under DeepX the degree of compression
is cautiously applied by the DAD search algorithm detailed
in §V-A). One reason for this is that model representations
produced by training processes do not always produce the most
compact representation.

B. Redundancy Estimation

Conventionally, the degree of compression to be applied is
determined by running a set of off-line experiments using test
data that can measure the impact on the overall accuracy.
DeepX can not use this approach because analysis over
test data would introduce too much overhead and require
a local device to maintain large multi-GB test datasets for
this purpose. RLC approaches this problem by proposing an
estimator, ℰ , designed specifically to recognize redundancy in

a layer representation. The general problem of determining the
relationship of model accuracy to the amount of compression
applied at different layers within a model, in absence of test
data, is very difficult. But by instead focusing on redundancy
that corresponds to small amount of accuracy loss, the problem
is made significantly easier.

The estimator ℰ computes the reconstruction error for
approximating 𝑊𝐿+1

𝑚×𝑛 with the product 𝑈𝑚×𝑐 ⋅ 𝑁𝑇
𝑐×𝑛 (see

Equation 3). More specifically:

ℰ(𝑊𝐿+1
𝑚×𝑛, �̂�

𝐿+1
𝑚×𝑛) =

√∑𝑚
𝑖=1 ∣∣𝑤𝑖 − 𝑤𝑖∣∣22

𝑚
, (4)

where, 𝑤𝑖 ∈ 𝑅𝑛. Additionally, as the compression can be
applied to various fully-connected layers of the deep ar-
chitecture, we compute the overall reconstruction error by
summing all estimated ℰ across modified layers. Without the
test dataset, the overall reconstruction error thus computed,
provides a simple metric for measuring the deviation in model
functionality. Although, overall accumulated reconstruction
error (across multiple layers) follows a non-linear relationship
on the effect of model performance, in our experiments we
will show that small value of the reconstruction error indicates
good recognition performance of the modified model.

However, users of DeepX can specify directly an upper
bound as to an acceptable parameter value, or this can be done
indirectly for them through loose translation of increases in
error into a threshold provided to the estimator. Regulating
the amount of compression applied to a layer in this way
means that RLC is conservative in how much is applied. This
is consistent with the design of DeepX in that the executed
deep model does not deviate significantly in accuracy.

V. DEEP ARCHITECTURE DECOMPOSITION

Large complex deep models are decomposed by DAD into
unit-blocks that are assigned to the available local and remote
processors. This allows DeepX to increase the utilization of
the full range of resources available, leading to significant
improvements in energy efficiency and execution latency at
inference time.

Overview. DAD spans a pair of components: Decomposition
Search (§V-A) and Recomposition Inference (§V-B). The first
component aims to efficiently consider a range of possible
decomposition plans of the deep architecture, each is assessed
in terms of estimated performance (e.g., energy usage, memory
requirements) relative to the provided DeepX user goals. RLC
expands the search space of DAD through compression of
layers within candidate plans. The second component performs
inference, and arrives at a model result (e.g., classification),
by recomposing the decomposed execution of model unit-
blocks that are allocated to separate local- and network-based
computational units. The inputs to DAD include: (1) the deep
model to be executed, (2) a set of performance goals (one or
more metrics from: energy, execution time, model error). The
output from DAD is ultimately the inference from the provided
model.

Algorithm 1 Decomposition Search
1: Input: (i) Model with 𝑛 layers, (ii) ℰ𝑇𝐻 (Allowed level of overall

approximation error), and (iii) 𝑒1, 𝑒2, . . . , 𝑒𝑘 (Energy footprint of all
available processors).

2: for all layer𝑖 ∈ Model do
3: layerType = getLayerType(layer𝑖) ⊳ Identifying layer type based on

operations
4: if layerType == convolution or pooling then
5: BlockSize = extractFilteringBlocks()
6: else ⊳ Fully connected layers
7: BlockSize = extractFeedForwardBlocks()
8: for 𝑗 = 1 to 𝑃 do ⊳ Extracting parameters for all processors
9: 𝐸𝑗 , 𝐵𝑗 =getProcessorParameters(BlockSize, 𝑒𝑗)

10: if layerType == Feed-forward then
11: for k=90,-10,10 do ⊳ Linear searching parameter space
12: ℰ =CompressSVD(𝑊 𝑙𝑎𝑦𝑒𝑟𝑖

𝑚×𝑛 , 𝑘) ⊳ Estimating Reconstruction
Error

13: if ℰ < ℰ𝑇𝐻 then
14: Save 𝑈𝑚×𝑐 and 𝑁𝑇

𝑐×𝑛
15: else
16: break ⊳ Stop parameter searching
17: updateLayer(𝑙𝑎𝑦𝑒𝑟𝑖, 𝑈𝑚×𝑐, 𝑁𝑇

𝑐×𝑛)

18: applyOptimization(BlockSize, {𝐸}𝑘𝑗=1, {𝐵}𝑘𝑗=1) ⊳ using
Equation 5a

19: Assign blocks to processors as identified by the optimizations

A. Decomposition Search and Optimization

Ultimately, the decomposition plan reached by DAD must
reflect the currently available network- and device-based re-
sources, and therefore a new plan is computed each time a
model is executed. But due to the large number of units and
layers that comprise typical deep models, a large variety of
potential decompositions exist. Consequently, the search for
this plan must balance the speed and efficiency it identifies the
plan, along with the need to satisfy user performance goals.

Search. Algorithm 1 details the approach by DAD to cope
with these competing concerns. Three specific techniques are
employed, each narrow the search space by encoding an
understanding of the deep learning algorithms and how they
execute on within the resource limits presented by hardware.
First, the architecture of each deep learning model includes
a series of dependencies based on factors such as layer type,
which determines the units must be computed in series. This
limits groups of layers (Algorithm 1, line 2−7) and units that
can be packed together to maximize desirable properties like
parallel execution. Second, hardware resource limits dictate
if a unit-block of the model is viable or not (line 5 and 7).
For example, a collection of units and layers may require too
much memory than a particular processor can currently (or
is expected to) support; in such cases the candidate partition
and allocation can be ignored. Finally, levels of compression
(denoted by the parameter 𝑘) is estimated by allowing to retain
𝑘% variance in the weight matrix by selecting top eigen-
values based on their cumulative distribution function (line
12). The resulting compression may be within the general
viability for DeepX (e.g., a drop in accuracy of 5% – not
considered excessive). Figure 5 illustrates an overview of
the decomposition scheme described above for computational
layers identified within a group.

Deep Architecture
Decomposition GPU CPU LPU

Fig. 5: Illustration of deep architecture decomposition. Different parts
of the model architecture are assigned to available computational
resources for runtime efficiency.

Optimization. We follow a layer wise partitioning approach
and decompose the overall computations needed to evaluate
the states of the nodes within a layer (e.g., 𝐿), given the states
of all the nodes in the previous layer (𝐿 − 1), into groups
of smaller computation tasks. This layer-wise decomposition
strategy allows us to consistently update states of nodes within
a deep architecture in a feed-forward fashion and improve
overall inference efficiency. In the following, we describe the
optimization approach in detail.

Unit-Block: Given a layer 𝐿, we define a unit-block as the
lowest number of computations needed to update the state
of a single node in that layer. Computations involved in
evaluating the state of a node in layer 𝐿 is given by: 𝑥𝐿

𝑖 =

𝑔
(∑

𝑗 𝑥
𝐿−1
𝑗 ⋅ 𝑤𝑖𝑗 + 𝑏𝑖

)
, where, 𝑤𝑖𝑗 is the weight connecting

the 𝑖𝑡ℎ node in layer 𝐿 with the 𝑗𝑡ℎ node in layer 𝐿 − 1, 𝑏𝑖
is the bias term and 𝑔(⋅) is the non-linear function. The total
number of unique blocks in a layer is the number of nodes 𝑁
present in the layer. The decomposition task can be viewed
as identifying a suitable number of blocks and then assigning
them to an available resource.

Allocation: Formally, let 𝒫 = {1, 2, ..., 𝑃} be the set of
processors available in the system, 𝐵𝑖, ∀𝑖 ∈ 𝒫 be the number
of blocks assigned to processor 𝑖, and 𝐿𝑖 be the load limit
of processor 𝑖. Further, let 𝐸𝑖 and 𝑇𝑖 denote the energy
and the time needed to compute a single block on processor
𝑖 respectively. The optimization problem, which minimizes
the overall energy consumption and execution time, can be
formulated as follows:

min. 𝛼

𝑃∑
𝑖=1

𝐸𝑖𝐵𝑖 + 𝛽max
𝑖∈𝒫

{𝑇𝑖𝐵𝑖} (5a)

s.t.
𝑃∑
𝑖=1

𝐵𝑖 = 𝑁

𝐵𝑖 ≤ 𝐿𝑖, ∀𝑖 ∈ 𝒫,

𝐵𝑖 ≥ 0, 𝐵𝑖 ∈ 𝒵, ∀𝑖 ∈ 𝒫,

where 𝒵 is the set of integers. Note that 𝛼, 𝛽 ≥ 0 are the
weights that can be tuned to achieve any arbitrary trade-off
between energy and time. The inputs 𝑃 , 𝐸𝑖 and 𝑇𝑖 are platform
specific, and we estimate them by running a large number of
experiments and taking the average.

We can transform (5a) to a Mixed Integer Linear Program
(MILP) by introducing an auxiliary variable 𝐴, replacing
max𝑖∈𝒫{𝑇𝑖𝐵𝑖} by 𝐴, and adding the constraint 𝑇𝑖𝐵𝑖 ≤ 𝐴,

Krait CPU — Core 1 Hexagon DSP

Krait CPU — Core 2

Krait CPU — Core 3

Krait CPU — Core 4

Adreno GPU

Connectivity
4G LTE, WiFi
BT, FM, USB

(a) Snapdragon 800

DDR3 DDR3 DDR3 DDR3

Memory Controller

L2 L2 Cache

ARM

ARM

ARM

ARM

192-core
CUDA
GPU

Low Power Core (ARM CPU)

(b) Tegra K1

Fig. 6: Internal Architecture of SoCs used for DeepX Prototype

(a) Snapdragon 800 (b) Tegra K1

Fig. 7: Developer Boards for SoCs used for DeepX Prototype

∀𝑖 ∈ 𝒫 to the formulation, and solve the problem by invoking
any standard MILP solvers, such as CPLEX [27].

B. Recomposition Inference

Although, distributed forms of model training are common, it
is unconventional to attempt to decompose the execution of
inference across local and remote resources. a number of im-
plementation level optimizations are done after the deposition
plan is determined, the necessary model parameters and model
state are copied. For those components that can operate in
parallel are executed in parallel, e.g., convolution tasks. Others
wait until earlier dependencies are completed. To further save
energy, DeepX powers down the state of the processors, if
possible.

VI. IMPLEMENTATION

We conclude our description of DeepX by detailing its imple-
mentation, and highlighting two prototype systems.

A. Prototype Platforms

The software described in §VI-B is implemented as two
prototypes, each targeting Qualcomm and Nvidia SoCs. Before
describing this software, we first provide details of each SoC;
while some components are written differently for each SoC
processor, in all cases components remain logically equivalent.

Qualcomm Snapdragon 800 SoC. As one of the most
popular mobile SoCs, the Snapdragon 800 (Figure 7a) is
already present in many phones (e.g., Nexus 5, Nokia Lumia
1520 and 930). As shown in Figure 6a, this SoC contains
3 programmable processors: a Krait 4-core 2.3 GHz CPU, an
Adreno 330 GPU and the 680 MHz Hexagon DSP. To program
this SoC, we use Qualcomm’s Mobile Development Platform
that offers low-level DSP APIs within the Hexagon SDK.

Nvidia Tegra K1 SoC. Although not as popular as the
Snapdragon, the Tegra K1 (Figure 7b) provides extreme GPU

performance. The heart of this chip, as illustrated in Figure 6b,
is the Kepler 192-core GPU which is coupled with a 2.3Ghz 4-
core Cortex CPU and an extra low-power 5𝑡ℎ core (LPC) (that
is designed for energy efficiency). The K1 SoC is used in the
Nexus 9, Google’s phone prototype within Project Ara [28],
and even high-end cars [29]. It is also used in IoT devices
like the June Oven [30]. Executing code on the LPC requires
the toggling of linux system calls, while access to the GPU is
available from CUDA drivers [10].

B. Prototype Components

We now detail prototype components. Our Tegra version is
written in Lua and C++, in contrast the Snapdragon prototype
replaces Java for Lua. Each prototype spans 7.1k and 4.8k
lines-of-code, respectively.

Model Interpreter. Any CNN or DNN is supported; a
model is described to the interpreter as a JSON encoding of
model architecture and parameters. This input also specifies
details like the input sensor, sampling rates and pre-processing
steps. Model file formats of deep learning toolkits, such as
Torch [31], are also accepted.

Inference APIs. Mobile apps at runtime interact with the
accelerator via a simple API. The two primary API calls are
for: (1) providing new input data (e.g., audio clip); and (2)
collecting inferences (e.g., recognized objects). Optional call
parameters set target execution time and reconstruction error
(recall §IV-B).

OS Interface. Because DeepX reacts to changes in system
resources (e.g., available memory, processor load), the accel-
erator needs to track these closely. This provided by a thin
wrapper inside DeepX that uses Android APIs (in the case
of the Snapdragon port) and exposed file-system bindings (for
the Tegra).

Execution Planner. As suggested by Figure 3, the Execu-
tion Planner is the hub of DeepX operation. It is invoked
when inference is required (either by API call, or due to
a pre-defined sampling rate). Given current system resource
conditions it manages and optimizes the execution of the
specified deep model against raw data from the sensor. As
a result, the implementation of this planner includes both
RLC and DAD, along with estimators for per-plan resource
usage. For RLC and DAD, we adopt well-known high-speed
(and portable) libraries for commonly occurring operations; for
example, SVD operations use SVDPACKC [20] and mixed
integer linear program solving is based on CPLEX [27].
Estimators of resources required by candidate plans based on
spline regressions performed with python libraries. Factors like
memory or computation time are predicted based on large-
grain deep model characteristics (number of layers and units,
type of layers); regressions are updated as models execute
and provide additional data, per processor energy profiling
(an offline step) allow execution time to be mapped to energy
consumption. We find techniques like [26] are relatively easily
adapted for this process.

Type Size Architecture

AlexNet CNN 60.9M c:5𝚤; p:3‡; h:2★; n:{all 4096}†
SVHN CNN 313K c:2𝚤; p:2‡; h:2★; n:{1600,128}†
SpeakerID DNN 1.8M h:2★; n:{all 1000}†
AudioScene DNN 1.7M h:2★; n:{all 1000}†

𝚤convolution layers; ‡pooling layers; ★hidden layers; †hidden nodes

TABLE I: Representative Deep Models

Inference Host. We implement 5 different inference hosts,
2 for the Qualcomm (viz. CPU, DSP) and 3 for the Nvida
(viz. CPU, GPU, LPC). Each host is customized for the
specific processor, given its limitations (such as memory)
and strengths (e.g., instruction set, or architectural aspects
for efficient deep layer/unit calculations). Code also carefully
considers cache/memory block size when deciding how to
chunk data processing operations.

VII. EVALUATION

In this section through a comprehensive set of experiments,
we examine the benefits and design choices of DeepX.

A. Methodology

The following setup is general to all the experiments we per-
form. For those experiments that alter this setup we discuss this
at the point of presenting results. Unless otherwise stated the
energy and latency measurements reported are for performing
a single inference. In other words, recognizing the objects in a
single image, or classifying a single audio clip. Where we refer
to the cloud we use average WiFi performance of 5Mbps and
strong signal strength (unless otherwise stated). No resources
used by the cloud are considered, but all device side data
processing costs are included (such as inference computation,
and network transmission); note, sensor sampling costs are not
reflected in any evaluation.

Representative Workloads. We use in total four deep
learning models, described in Table I. One of these is a
large-scale model having over 60.9M parameters, two models
are moderately large, respectively having 1.8M and 1.7M
parameters. These models were originally conceived to run
on the cloud. We use one CNN and two DNNs of this type.
We also test a relatively small-scale CNN model with 313K
parameters to test performance improvements of models under
DeepX.

AlexNet. Our first large-scale model – AlexNet (CNN) per-
forms object recognition [4] and supports more than 1,000
object classes (e.g., dog, car). It is the most complex model
studied (60.9M parameters). In 2012, it offered state-of-the-art
levels of accuracy for well-known datasets like ImageNet.

SpeakerID. For our first moderately learge-scale model, we
implement a 2-hidden layer (each comprising of 1000 nodes)
DNN and train to identify the speakers among 106 participants
(45 male and 61 female) from text-independent audio signals
as provided in the Automatic Speaker Verification Spoofing
and Countermeasures Challenge Dataset [39]. This speech
recognition model is designed to be run continuously and has
more than 1.8M nodes.

SVHN. Our first smaller scale model [32] is a CNN that is
designed to read images of house numbers captured in natural
settings. SVHN has been used to recognize such numbers from
Google Streetview images.

AudioScene. Our second moderately large-scale model fol-
lows similar architecture as in the speaker identification task
(2-hidden layer DNN) and we train the model to identify
among 19 different ambient audio environments. Examples of
the audio environment includes ‘busy street’, ‘plane’, ‘bus’,
‘cafe’, ‘student hall’ and ‘restaurant’. This dataset is publicly
available [40] and contains over 1500 minutes of audio scenes.
This audio recognition model has over 1.7M nodes.

Baselines. We report comparisons approaches that include
those that are conventional (e.g., use of the CPU only and
use of cloud offloading) and rare (e.g., directly using the
DSP, LPU, GPU on mobile SoCs). When we report results
using the cloud, GPU, LPU, DSP or CPU then these do
not involve any other computational units. For some detailed
results (such as Figure 8, we also report various cloud partition
splits (i.e., a fraction of the computation is done locally on
the CPU, with the remainder on the cloud) to indicate the
possible trade-offs in execution and energy in relation to
those that DeepX enables. Cloud results consider of course
the networking energy and latency of transmitting either raw
sensor data or intermediate model state information (in the
case of inference being partitioned).

In comparison to these baselines, DeepX is free to use any
supported unit, and has constrained use of RLC; specifically
we only set ℰ𝑇𝐻 to allow expected accuracy drops of < 5%.
To validate the accuracy drop, we use the original datasets
used to train the respective models and run a large number of
offline experiments with varying parametric settings used for
RLC and DAD (See Algorithm 1). We empirically validate
that this expectation is met, and in no case find a drop greater
than 5%. We note however, that this threshold of 5% that we
use in this paper is somewhat arbitrary and the actual range of
importance will be highly application dependent. Thus it is a
tunable parameter of the system, and within our evaluation
we provide examples of how changing this alters resource
consumption (such as in Figure 9).

B. Energy and Execution Time Benefits

Table II summarizes the improvements to energy efficiency
we observe when using DeepX to execute each deep model.
Each table reports energy efficiency in terms of how many
multiples of additional energy are consumed if executing each
model on any of the available processor within the target
SoCs (Tegra or Snapdragon). For example, when SpeakerID
is running on the Snapdragon it will use a factor of 8.9×
(given within parentheses) more energy if executed using
the cloud than under DeepX. These tables are calculated
assuming no additional background load on any processor, and
with multiple execution time requirements set (viz. 100, 500
and 2000 msec.) – average values are reported. Across all
model and processor combinations, the mean energy benefit

CPU DSP Cloud
(only) (mJ) (only) (mJ) (only) (mJ)

AlexNet 933.5 (2.1×) – 4978.4 (11.2×)
SVHN 230.9 (2.6×) 142.1 (1.6×) 1101.1 (12.4×)
SpeakerID 113.4 (8.1×) 103.6 (7.4×) 124.2 (8.9×)
AudioScene 110.3 (8.0×) 99.3(7.2×) 122.7 (8.9×)

(a) Qualcomm Snapdragon 800 SoC

CPU LPU GPU Cloud
(only) (mJ) (only) (mJ) (only) (mJ) (only) (mJ)

AlexNet 1681.3 (13.2×) – 234.1 (1.8×) 2820 (22.1×)
SVHN 479.6 (4.3×) – 167.3 (1.5×) 1382.9 (12.4×)
SpeakerID 7.1 (7.8×) 109.1 (120.4×) 1.3 (1.4×) 26.9 (29.7×)
AudioScene 6.7 (7.6×) 106.1 (120.3×) 1.2 (1.4×) 26.1 (29.4×)

(b) Nvidia Tegra K1 SoC

TABLE II: DeepX needs only a fraction of the energy required by
methods that do not decompose a model across available processors,
and do not remove redundancy. Latency gains are also present, but
we emphasize here benefits to energy consumption. (Average reported
energy gains assuming maximum execution time set to 100, 500, and
2000 msec.)

of DeepX is 7.12× (Snapdragon) and 26.7× (Tegra) relative
to each baseline. We note that in these tables some individual
processors are unable to execute specific deep models (such
as AlexNet on the DSP of snapdragon), we find this is either
(1) due to a lack of memory on the processor along with the
fact none of the baseline have the ability to the reduce model
size like DeepX; or (2) they are unable to match any execution
time requirement.

Figure 8 provides a more detailed view of the improved
resource trade-offs that DeepX can enable, when 500 msec.
execution time (only) is considered for two models: AlexNet
and SpeakerID. In each case, DeepX provides the lowest
energy and is always under the time requirement (500 msec).
Additionally, we compare against an expanded set of baselines
that include a range of cloud partitioning of the model. While
running the model execution using various processors, often
they are unable to meet the execution time requested, they
only provide best effort. In the case of cloud offloading, a
combination of cloud splits are shown, which further highlight
that the energy/latency trade-offs are much poorer than DeepX.
We do not show these cloud trade-offs in the prior Table II to
keep the comparison clear.

Contrary to running all the computations on a specific
processor, DeepX allows for alleviating high memory require-
ments for deep models by partitioning of layers and then
utilizing unused hardware like the DSP (without requiring any
model compression). For example 93% of the total memory
needed for AlexNet is concentrated only in two fully con-
nected layers [44]. Model partitioning employed by DeepX
allows us to overcome the need for huge memory before
inference can be started. Moreover, given a relatively large
execution time (e.g., 500 m sec) requirement, high energy-
demanding processors, e.g., GPU, can be put to sleep sooner
and one or more low power cores can be utilized to compute
the residual task to minimize the overall power consumption.

(a) AlexNet – Snapdragon (b) AlexNet – Tegra (c) SpeakerID – Snapdragon

Fig. 8: Benefits to both execution time and energy consumption are observed under DeepX against a variety of baseline runtime strategies.
AlexNet is shown running on both platforms and SpeakerID is shown to run on snapdragon with a requested execution time of 500 msec.

Fig. 9: Memory requirement of AlexNet under DeepX

C. Safely Identifying and Leveraging Redundancy

The objective of RLC is to identify redundancy within deep
models to be exploited, allowing system resources to be
managed but without overly impacting accuracy. Table III
shows a key result. Our experimental setup seeks to constrain
accuracy loss to 5% or less (compared to the original model
before any changes are made). Here we show the result of
RLC being applied to each deep model we test. We find that
a large amount of model parameter reduction is possible, on
average > 75%, while no model suffers a drop in accuracy
of more than 4.9% (AlexNet). Importantly, RLC uses an
estimator threshold (ℰ , see §IV-B) for each model to limit
the accuracy drop. Here, e.g., we set ℰ to be 12 (RMSE) for
AlexNet, a value we find through empirical testing. However,
to understand the relationship between overall reconstruction
error and accuracy drop, in Figure 10 we summarize extensive
experimental results from all the four deep models for various
compression amounts. Interestingly, for all the models the
relationship between RMSE and accuracy drop is highly
non-linear. However, smaller RMSE values indicate smaller
accuracy drops for all the models. DeepX exploits this fact
while searching for better resource utilization (see Algorithm
1). Figure 10 also exhibits instances, where a high RMSE
also results in a small accuracy drop. Clearly, further theoret-
ical research is required to fully understand the relationship
between RMSE and accuracy drop. The current heuristic, i.e.,
minimizing RMSE with an empirically determined threshold,
allows developers to operate without requiring time consuming
re-training for models evaluated so far.

Figure 9 provides a detailed view for a single model
(AlexNet) of the same overall results presented in Table III.
We report results here for a single model running on the
Tegra hardware, but the trends we describe are seen in all
other deep models. Here we use RLC to examine how much
redundancy is identified when executing DeepX under varying
operating conditions, such as requests to execute the model
with faster or slower execution times or processor loads. De-
pending on these conditions RLC, in combination with DAD,
attempts to remove different amounts of redundancy. Figure 9
shows AlexNet can be compressed significantly allowing large
amounts of resources to be saved when necessary. Note, these
savings are discovered by DeepX on demand; in theory a
developer could apply ideas from RLC to find similar savings
for a specific set of resources. But a core idea of DeepX, is
for this to be done at runtime, and change a model requested
to be executed as little as possible while operating within the
resources available and the performance targets expressed.

Figure 10 also shows the impact of ℰ . A cluster of redun-
dancy results are shown that cause an accuracy loss greater
than 5%. However, these are only identified by RLC when the
estimator threshold is changed, and a few iterations performed.
All other results shown, that are consistently below the target
threshold, occur with the ℰ threshold set. This is another of
the core innovations of DeepX. Here we show it is possible
to limit the accuracy drop, and reduce the size of the model
significantly without datasets that are impractical to reside on
mobiles simply for performance tuning.

Existing approaches first apply an offline compression of
deep models using SVD, and then use the compressed model
for all inference tasks. This approach, however, does not allow
application developers to control the accuracy and energy
trade-offs. Depending on the application scenarios, developers
can accommodate a small drop in recognition accuracy (e.g.,
5%), when the resource gain is significant. Not only memory
benefits, smaller models also improve the overall execution
time and help to improve overall battery life. DeepX allows
accuracy and energy trade-offs by applying dynamic model
compressions using RLC under various user defined accuracy
requirements. The opportunity of resource trade-offs under
DeepX is also highlighted in Figure 9, which shows that the
requirement on recognition accuracy significantly influences
the memory foot print of the model. For example, in case of the

Relative Accuracy Memory
Loss (%) Reduction (%)

AlexNet 4.9 (77.5 to 72.6) 75.5 (233 MB to 57 MB)
SVHN 0.2 (83.9 to 83.7) 58.8 (16 MB to 7 MB)
SpeakerID 3.2 (93.7 to 90.5) 92.8 (28 MB to 2 MB)
AudioScene 4.3 (79.2 to 74.9) 77.8 (27 MB to 6 MB)

TABLE III: Model size reduction relative to accuracy loss, when
applying the estimator threshold. Large reductions are clearly possible
with only a small impact on accuracy. Note, for all deep models the
accuracy does not drop more than the targeted 5% due to the use of
the redundancy estimator.

Fig. 10: Loss in accuracy under RLC for varying estimator threshold
values for the four models. By altering the threshold, the impact on
accuracy can be limited as needed.

SpeakerID model, an allowance of 5% drop in accuracy runs
5.8 times faster (0.54 ms on Tegra) than the model allowing
only 1% drop (3.16 ms on Tegra). Thus DeepX can adjust
the model size dynamically based on the memory availability
and can be deployed to new hardware platforms with different
memory sizes without requiring system changes.

D. Decomposition and Assignment to Processors

The main objective of the decomposition and the assignment
operation is to divide the computational task into smaller
groups of blocks and assign them to the available processors,
such that the overall energy-consumption and latency remain
low. In the following we summarize the performances of
executing the optimization on both tegra and snapdragon while
running the AlexNet inference. The optimization equation
(Equation 5a) requires platform specific parameters for its
execution, which we compute by running experiments with a
different block size on each processor and then fitting a linear
model for generalizability. For the tegra this is done for: LPU,
CPU, GPU; for snapdragon this is done for DSP, CPU.

On tegra, the average runtime for the optimization solver
is around 14.1 ms per layer and 92.3 ms on snapdragon.
Note that, often the optimization solver does not need to run
repeatedly for each layer of the deep architecture, as often the
block size and processor loads remain similar (after evaluating
the state of all nodes in a layer). Thus the overall runtime of
the optimizer remains much smaller than the inference time
needed to evaluate the entire model architecture.

VIII. LIMITATIONS

Network Layout Optimization. Currently DeepX is appli-
cable to the widespread varieties of deep learning networks,
namely CNNs and DNNs, but not to others such as those cap-
turing temporal information. In addition, the observed perfor-
mance gains will vary depending on the network architecture
since some layer types (e.g., feed-forward vs. convolution)
benefit more than the others. Models that have been already
optimized for embedded scenarios (typically by hand, e.g.,
[11]) are not expected to experience significant gains from
RLC, although DAD is likely to still boost performance.

Changes in Resource Availability. DeepX performs per-
inference optimization across memory, energy and latency, but
we have not shown how it adapts to changes in the availability
of device resources (such as network connectivity or CPU
load) within the execution time frame. This is a limitation
in our evaluation and we plan to address it in future work.
Statically optimized models, as shown in [38], will perform
poorly when the assumptions about resources do not hold.

Novelty of SVD Compression. Although the SVD approach
to compressing layers in itself is not novel [21], we find
novel ways of applying the compression technique at runtime
for resource scaling and without the need for training data.
The latter extension is shown to work well empirically, but
more models and architectures need to be tested and a better
theoretical study is required to understand how much we can
compress before significant accuracy losses begin to emerge.

Resource Need Estimator. We use a simple model to estimate
how the candidate layout configurations will use energy,
memory, etc., and our initial findings suggest the model works
fairly well. However, a more rigorous approach to predicting
resource needs and adaptation to fluctuations is desirable.

Maximizing Hardware Usage. At the moment DeepX use
the GPU and CPU resources naı̈vely, without considering
the underlying hardware architecture. Targeted optimizations
that thoroughly make use of the hardware specifics would
complement our approach with even higher performance gains.

Deep Learning Hardware. Although, DeepX is not tested
on purpose built hardware for deep learning [41], [45], our
software approach to accelerating models in general should
apply in this case. However, the potential gains we see
in software may complement the produced hardware gains
resulting in both approaches amplifying each other’s benefits.

IX. RELATED WORK

Some of the strongest examples of successful deep learning
systems for mobile devices today come from industry. For
example, Google has enabled forms of its deep machine
translation models to run directly on a phone [36]; deep
learning has already transformed commercial mobile speech
recognition [37]. Technical details for these systems are usu-
ally sketchy. But these few examples rely on manual per-model
optimizations, provided by teams of people with high-levels
of expertise in deep learning and mobile devices. In contrast,

DeepX aims to allow any developer to use deep learning
methods and automatically lowers resource usage to levels that
are feasible for mobile devices.

Similarly, researchers have also demonstrated one-off opti-
mizations such as [33] that scaled down DNNs to run directly
on a DSP only, offering energy efficiency. Others also propose
deep models that are much smaller than normal and so can run
on phones [11], [12]. DeepX instead targets full-scale deep
models that otherwise only appear in cloud systems.

Hardware specialization is another promising direction for
deep learning optimization with many studies already un-
derway [41], [45]. However often these prototypes perform
a specific type of deep learning (such as a CNN) or only
certain types of deep model layer types (e.g., a convolution),
with remaining layers executed as normal. Furthermore, we
also expect DeepX will leverage specialist hardware as they
become more available.

Use of more general-purpose low-power processors [46]
have proven especially effective for continuous sensing types
of applications. Systems like SpeakerSense [47] or DSP.Ear
[48] apply application-level optimizations to balance the com-
putational workload between the main CPU and the assisting
co-processor. However, neither of these systems considers the
n-way division by DeepX (viz. CPU, GPU, LPU or DSP).

X. CONCLUSION

In this paper, we have presented the design, implementation
and evaluation of DeepX – a first-of-its-kind software ac-
celerator that offers forms of resource optimization that are
critical when using the best available learning algorithms,
namely deep learning models, that are notably absent from
mobile usage today. We believe our design and results will
promote much needed further research into sensor processing
and mobile machine learning inference. More importantly,
DeepX shows that the bleeding edge of machine learning –
as it currently manifests in deep learning – can actually run
on the latest mobile hardware, all with a reasonable energy
and latency performance.

REFERENCES

[1] Y. Bengio, et al., “Deep learning,” MIT Press 2015
[2] Y. Taigman, et al., “Deepface: Closing the gap to human-level perfor-

mance in face verification,” CVPR ’14
[3] Y. Kim, et al., “Deep learning for robust feature generation in audiovisual

emotion recognition,” ICASSP ’13
[4] A. Krizhevsky, et al., “Imagenet classification with deep convolutional

neural networks,” NIPS ’12
[5] A. Y. Hannun, et al., “Deep speech: Scaling up end-to-end speech

recognition,” CoRR, vol. abs/1412.5567, 2014.
[6] G. Hinton, et al., “Deep neural networks for acoustic modeling in speech

recognition,” Signal Processing Magazine, 2012.
[7] G. E. Hinton, et al., “A fast learning algorithm for deep belief nets,”

Neural Comput., vol. 18, no. 7, pp. 1527–1554, Jul. 2006.
[8] Y. LeCun, et al., “Gradient-based learning applied to document recog-

nition,” Proc. of IEEE, vol. 86, no. 11, pp. 2278–2324.
[9] C. M. Bishop, Pattern Recognition and Machine Learning (Information

Science and Statistics). Springer-Verlag, 2006.
[10] “Nvidia CUDA,” http://developer.nvidia.com/cuda-zone
[11] G. Chen, et al., “Small-footprint keyword spotting using deep neural

networks,” ICASSP’14
[12] E. Variani, et al., “Deep neural networks for small footprint

text-dependent speaker verification,” ICASSP ’14
[13] J. Dean, et al., “Large scale distributed deep networks,” in NIPS ’12

[14] “Qualcomm Snapdragon 800,” https://www.qualcomm.com/products/
snapdragon/processors/800

[15] “Nvidia Tegra K1,” http://www.nvidia.com/object/tegra-k1-processor.
html.

[16] “LG G Watch R,” https://www.qualcomm.com/products/snapdragon/
wearables/lg-g-watch-r.

[17] “Qualcomm Snapdragon 400,” https://www.qualcomm.com/products/
snapdragon/processors/400.

[18] Y. Gong, et al., “Compressing deep convolutional networks using vector
quantization,” arXiv preprint arXiv:1412.6115, 2014.

[19] T. He, et al., “Reshaping deep neural network for fast decoding by node-
pruning,” ICASSP ’14

[20] “SVDLIBC,” http://tedlab.mit.edu/∼dr/SVDLIBC.
[21] J. Xue, et al., “Restructuring of deep neural network acoustic models

with singular value decomposition,” Interspeech ’13
[22] E. Miluzzo, et al., “Darwin phones: The evolution of sensing and

inference on mobile phones,” MobiSys ’10
[23] H. Lu, et al., “Stresssense: Detecting stress in unconstrained acoustic

environments using smartphones,” UbiComp ’12
[24] K. Czajkowski, et al., “A resource management architecture for meta-

computing systems,” in Job Scheduling Strategies for Parallel Process-
ing. Springer, 1998, pp. 62–82.

[25] R. Wolski, et al., “Predicting the cpu availability of time-shared unix
systems on the computational grid,” in HPDC ’99

[26] C. Min, et al., “Powerforecaster: Predicting smartphone power impact
of continuous sensing applications at pre-installation time,” SenSys ’15’

[27] ILOG Cplex, “12.2 User’s Manual”, IBM, 2010.
[28] “Google Project Ara,” http://www.projectara.com.
[29] “Audi self-driving car brings NVIDIA Tegra

K1 front and center,” http://www.slashgear.com/
audi-self-driving-car-brings-nvidia-tegra-k1-front-and-center-25322090/.

[30] “June Oven,” http://techgage.com/news/
nvidias-tegra-k1-soc-has-made-it-into-an-oven-that-detects-what-its-cooking/.

[31] “Torch,” http://torch.ch/.
[32] Y. Netzer, et al., “Reading digits in natural images with unsupervised

feature learning,” NIPS workshop on deep learning and unsupervised
feature learning, 2011.

[33] N. Lane, et al., “Deepear: Robust smartphone audio sensing in uncon-
strained acoustic environments using deep learning,” UbiComp ’15

[34] O. Russakovsky, et al., “ImageNet Large Scale Visual Recognition
Challenge,” 2014.

[35] K. K. Rachuri, et al., “Emotionsense: A mobile phones based adaptive
platform for experimental social psychology research,” Ubicomp ’10

[36] “How Google Translate squeezes deep learning onto
a phone,” http://googleresearch.blogspot.co.uk/2015/07/
how-google-translate-squeezes-deep.html.

[37] G. Hinton, et al., “Deep neural networks for acoustic modeling in speech
recognition: The shared views of four research groups,” IEEE Signal
Processing Mag, vol. 29, no. 6, pp. 82–97, 2012.

[38] D. Chu, et al., “Balancing Energy, Latency and Accuracy for Mobile
Sensor Data Classification,” SenSys, 2011.

[39] W. Zhizheng, et al., “Automatic Speaker Verification Spoofing and
Countermeasures Challenge (ASVspoof 2015) Database,” University of
Edinburgh. The Centre for Speech Technology Research (CSTR), 2015.

[40] A. Rakotomamonjy, et al., “Histogram of gradients of Time-Frequency
representations for audio scene detection,” Technical report, HAL, 2014.

[41] T. Chen, et al., “Diannao: A small-footprint high-throughput accelerator
for ubiquitous machine-learning,” ASPLOS ’14

[42] N. Lane, et al., “BeWell: Sensing Sleep, Physical Activities and Social
Interactions to Promote Wellbeing,” Mobile Networks and Applications,
vol. 19, no. 3, pp. 345–359, 2014.

[43] N. Lane, et al., “Can Deep Learning Revolutionize Mobile Sensing?,”
HotMobile 2015.

[44] N. Lane, et al., “An Early Resource Characterization of Deep Learning
on Wearables, Smartphones and Internet-of-Things Devices,” IoT-App
workshop, 2015.

[45] C. Zhang, et al., “Optimizing fpga-based accelerator design for deep
convolutional neural networks,” SIGDA ’15

[46] B. Priyantha, et al., “Enabling energy efficient continuous sensing on
mobile phones with littlerock,” in IPSN ’10

[47] H. Lu, et al., “Speakersense: Energy efficient unobtrusive speaker
identification on mobile phones,” Pervasive’11

[48] P. Georgiev, et al., “Dsp.ear: Leveraging co-processor support for
continuous audio sensing on smartphones,” SenSys ’14

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AbadiMT-CondensedLight
 /ACaslon-Italic
 /ACaslon-Regular
 /ACaslon-Semibold
 /ACaslon-SemiboldItalic
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /AGaramond-Bold
 /AGaramond-BoldItalic
 /AGaramond-Italic
 /AGaramond-Regular
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /AgencyFB-Bold
 /AgencyFB-Reg
 /AGOldFace-Outline
 /AharoniBold
 /Algerian
 /Americana
 /Americana-ExtraBold
 /AndaleMono
 /AndaleMonoIPA
 /AngsanaNew
 /AngsanaNew-Bold
 /AngsanaNew-BoldItalic
 /AngsanaNew-Italic
 /AngsanaUPC
 /AngsanaUPC-Bold
 /AngsanaUPC-BoldItalic
 /AngsanaUPC-Italic
 /Anna
 /ArialAlternative
 /ArialAlternativeSymbol
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialMT-Black
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /ArrusBT-Bold
 /ArrusBT-BoldItalic
 /ArrusBT-Italic
 /ArrusBT-Roman
 /AvantGarde-Book
 /AvantGarde-BookOblique
 /AvantGarde-Demi
 /AvantGarde-DemiOblique
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /BakerSignet
 /BankGothicBT-Medium
 /Barmeno-Bold
 /Barmeno-ExtraBold
 /Barmeno-Medium
 /Barmeno-Regular
 /Baskerville
 /BaskervilleBE-Italic
 /BaskervilleBE-Medium
 /BaskervilleBE-MediumItalic
 /BaskervilleBE-Regular
 /Baskerville-Bold
 /Baskerville-BoldItalic
 /Baskerville-Italic
 /BaskOldFace
 /Batang
 /BatangChe
 /Bauhaus93
 /Bellevue
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlingAntiqua-Bold
 /BerlingAntiqua-BoldItalic
 /BerlingAntiqua-Italic
 /BerlingAntiqua-Roman
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BernhardModernBT-Italic
 /BernhardModernBT-Roman
 /BiffoMT
 /BinnerD
 /BinnerGothic
 /BlackadderITC-Regular
 /Blackoak
 /blex
 /blsy
 /Bodoni
 /Bodoni-Bold
 /Bodoni-BoldItalic
 /Bodoni-Italic
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /Bodoni-Poster
 /Bodoni-PosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /Bookman-Demi
 /Bookman-DemiItalic
 /Bookman-Light
 /Bookman-LightItalic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolOne-Regular
 /BookshelfSymbolSeven
 /BookshelfSymbolThree-Regular
 /BookshelfSymbolTwo-Regular
 /Botanical
 /Boton-Italic
 /Boton-Medium
 /Boton-MediumItalic
 /Boton-Regular
 /Boulevard
 /BradleyHandITC
 /Braggadocio
 /BritannicBold
 /Broadway
 /BrowalliaNew
 /BrowalliaNew-Bold
 /BrowalliaNew-BoldItalic
 /BrowalliaNew-Italic
 /BrowalliaUPC
 /BrowalliaUPC-Bold
 /BrowalliaUPC-BoldItalic
 /BrowalliaUPC-Italic
 /BrushScript
 /BrushScriptMT
 /CaflischScript-Bold
 /CaflischScript-Regular
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /Carta
 /CaslonOpenfaceBT-Regular
 /Castellar
 /CastellarMT
 /Centaur
 /Centaur-Italic
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchL-Bold
 /CenturySchL-BoldItal
 /CenturySchL-Ital
 /CenturySchL-Roma
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /CGTimes-Bold
 /CGTimes-BoldItalic
 /CGTimes-Italic
 /CGTimes-Regular
 /CharterBT-Bold
 /CharterBT-BoldItalic
 /CharterBT-Italic
 /CharterBT-Roman
 /CheltenhamITCbyBT-Bold
 /CheltenhamITCbyBT-BoldItalic
 /CheltenhamITCbyBT-Book
 /CheltenhamITCbyBT-BookItalic
 /Chiller-Regular
 /Cmb10
 /CMB10
 /Cmbsy10
 /CMBSY10
 /CMBSY5
 /CMBSY6
 /CMBSY7
 /CMBSY8
 /CMBSY9
 /Cmbx10
 /CMBX10
 /Cmbx12
 /CMBX12
 /Cmbx5
 /CMBX5
 /Cmbx6
 /CMBX6
 /Cmbx7
 /CMBX7
 /Cmbx8
 /CMBX8
 /Cmbx9
 /CMBX9
 /Cmbxsl10
 /CMBXSL10
 /Cmbxti10
 /CMBXTI10
 /Cmcsc10
 /CMCSC10
 /Cmcsc8
 /CMCSC8
 /Cmcsc9
 /CMCSC9
 /Cmdunh10
 /CMDUNH10
 /Cmex10
 /CMEX10
 /CMEX7
 /CMEX8
 /CMEX9
 /Cmff10
 /CMFF10
 /Cmfi10
 /CMFI10
 /Cmfib8
 /CMFIB8
 /Cminch
 /CMINCH
 /Cmitt10
 /CMITT10
 /Cmmi10
 /CMMI10
 /Cmmi12
 /CMMI12
 /Cmmi5
 /CMMI5
 /Cmmi6
 /CMMI6
 /Cmmi7
 /CMMI7
 /Cmmi8
 /CMMI8
 /Cmmi9
 /CMMI9
 /Cmmib10
 /CMMIB10
 /CMMIB5
 /CMMIB6
 /CMMIB7
 /CMMIB8
 /CMMIB9
 /Cmr10
 /CMR10
 /Cmr12
 /CMR12
 /Cmr17
 /CMR17
 /Cmr5
 /CMR5
 /Cmr6
 /CMR6
 /Cmr7
 /CMR7
 /Cmr8
 /CMR8
 /Cmr9
 /CMR9
 /Cmsl10
 /CMSL10
 /Cmsl12
 /CMSL12
 /Cmsl8
 /CMSL8
 /Cmsl9
 /CMSL9
 /Cmsltt10
 /CMSLTT10
 /Cmss10
 /CMSS10
 /Cmss12
 /CMSS12
 /Cmss17
 /CMSS17
 /Cmss8
 /CMSS8
 /Cmss9
 /CMSS9
 /Cmssbx10
 /CMSSBX10
 /Cmssdc10
 /CMSSDC10
 /Cmssi10
 /CMSSI10
 /Cmssi12
 /CMSSI12
 /Cmssi17
 /CMSSI17
 /Cmssi8
 /CMSSI8
 /Cmssi9
 /CMSSI9
 /Cmssq8
 /CMSSQ8
 /Cmssqi8
 /CMSSQI8
 /Cmsy10
 /CMSY10
 /Cmsy5
 /CMSY5
 /Cmsy6
 /CMSY6
 /Cmsy7
 /CMSY7
 /Cmsy8
 /CMSY8
 /Cmsy9
 /CMSY9
 /Cmtcsc10
 /CMTCSC10
 /Cmtex10
 /CMTEX10
 /Cmtex8
 /CMTEX8
 /Cmtex9
 /CMTEX9
 /Cmti10
 /CMTI10
 /Cmti12
 /CMTI12
 /Cmti7
 /CMTI7
 /Cmti8
 /CMTI8
 /Cmti9
 /CMTI9
 /Cmtt10
 /CMTT10
 /Cmtt12
 /CMTT12
 /Cmtt8
 /CMTT8
 /Cmtt9
 /CMTT9
 /Cmu10
 /CMU10
 /Cmvtt10
 /CMVTT10
 /ColonnaMT
 /Colossalis-Bold
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Copperplate-ThirtyThreeBC
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CordiaNew
 /CordiaNew-Bold
 /CordiaNew-BoldItalic
 /CordiaNew-Italic
 /CordiaUPC
 /CordiaUPC-Bold
 /CordiaUPC-BoldItalic
 /CordiaUPC-Italic
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /CourierX-Bold
 /CourierX-BoldOblique
 /CourierX-Oblique
 /CourierX-Regular
 /CreepyRegular
 /CurlzMT
 /David-Bold
 /David-Reg
 /DavidTransparent
 /Dcb10
 /Dcbx10
 /Dcbxsl10
 /Dcbxti10
 /Dccsc10
 /Dcitt10
 /Dcr10
 /Desdemona
 /DilleniaUPC
 /DilleniaUPCBold
 /DilleniaUPCBoldItalic
 /DilleniaUPCItalic
 /Dingbats
 /DomCasual
 /Dotum
 /DotumChe
 /DoulosSIL
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversGothicBT-Regular
 /EngraversMT
 /EraserDust
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /ErieBlackPSMT
 /ErieLightPSMT
 /EriePSMT
 /EstrangeloEdessa
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /EucrosiaUPC
 /EucrosiaUPCBold
 /EucrosiaUPCBoldItalic
 /EucrosiaUPCItalic
 /EUEX10
 /EUEX7
 /EUEX8
 /EUEX9
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /FelixTitlingMT
 /Fences
 /FencesPlain
 /FigaroMT
 /FixedMiriamTransparent
 /FootlightMTLight
 /Formata-Italic
 /Formata-Medium
 /Formata-MediumItalic
 /Formata-Regular
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothicITCbyBT-Book
 /FranklinGothicITCbyBT-BookItal
 /FranklinGothicITCbyBT-Demi
 /FranklinGothicITCbyBT-DemiItal
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FrankRuehl
 /FreesiaUPC
 /FreesiaUPCBold
 /FreesiaUPCBoldItalic
 /FreesiaUPCItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Frutiger-Black
 /Frutiger-BlackCn
 /Frutiger-BlackItalic
 /Frutiger-Bold
 /Frutiger-BoldCn
 /Frutiger-BoldItalic
 /Frutiger-Cn
 /Frutiger-ExtraBlackCn
 /Frutiger-Italic
 /Frutiger-Light
 /Frutiger-LightCn
 /Frutiger-LightItalic
 /Frutiger-Roman
 /Frutiger-UltraBlack
 /Futura-Bold
 /Futura-BoldOblique
 /Futura-Book
 /Futura-BookOblique
 /FuturaBT-Bold
 /FuturaBT-BoldItalic
 /FuturaBT-Book
 /FuturaBT-BookItalic
 /FuturaBT-Medium
 /FuturaBT-MediumItalic
 /Futura-Light
 /Futura-LightOblique
 /GalliardITCbyBT-Bold
 /GalliardITCbyBT-BoldItalic
 /GalliardITCbyBT-Italic
 /GalliardITCbyBT-Roman
 /Garamond
 /Garamond-Bold
 /Garamond-BoldCondensed
 /Garamond-BoldCondensedItalic
 /Garamond-BoldItalic
 /Garamond-BookCondensed
 /Garamond-BookCondensedItalic
 /Garamond-Italic
 /Garamond-LightCondensed
 /Garamond-LightCondensedItalic
 /Gautami
 /GeometricSlab703BT-Light
 /GeometricSlab703BT-LightItalic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /GeorgiaRef
 /Giddyup
 /Giddyup-Thangs
 /Gigi-Regular
 /GillSans
 /GillSans-Bold
 /GillSans-BoldItalic
 /GillSans-Condensed
 /GillSans-CondensedBold
 /GillSans-Italic
 /GillSans-Light
 /GillSans-LightItalic
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /Gothic-Thirteen
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /GoudyTextMT-LombardicCapitals
 /GSIDefaultSymbols
 /Gulim
 /GulimChe
 /Gungsuh
 /GungsuhChe
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /Helvetica
 /Helvetica-Black
 /Helvetica-BlackOblique
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Condensed
 /Helvetica-Condensed-Black
 /Helvetica-Condensed-BlackObl
 /Helvetica-Condensed-Bold
 /Helvetica-Condensed-BoldObl
 /Helvetica-Condensed-Light
 /Helvetica-Condensed-LightObl
 /Helvetica-Condensed-Oblique
 /Helvetica-Fraction
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Humanist521BT-BoldCondensed
 /Humanist521BT-Light
 /Humanist521BT-LightItalic
 /Humanist521BT-RomanCondensed
 /Imago-ExtraBold
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /IrisUPC
 /IrisUPCBold
 /IrisUPCBoldItalic
 /IrisUPCItalic
 /Ironwood
 /ItcEras-Medium
 /ItcKabel-Bold
 /ItcKabel-Book
 /ItcKabel-Demi
 /ItcKabel-Medium
 /ItcKabel-Ultra
 /JasmineUPC
 /JasmineUPC-Bold
 /JasmineUPC-BoldItalic
 /JasmineUPC-Italic
 /JoannaMT
 /JoannaMT-Italic
 /Jokerman-Regular
 /JuiceITC-Regular
 /Kartika
 /Kaufmann
 /KaufmannBT-Bold
 /KaufmannBT-Regular
 /KidTYPEPaint
 /KinoMT
 /KodchiangUPC
 /KodchiangUPC-Bold
 /KodchiangUPC-BoldItalic
 /KodchiangUPC-Italic
 /KorinnaITCbyBT-Regular
 /KristenITC-Regular
 /KrutiDev040Bold
 /KrutiDev040BoldItalic
 /KrutiDev040Condensed
 /KrutiDev040Italic
 /KrutiDev040Thin
 /KrutiDev040Wide
 /KrutiDev060
 /KrutiDev060Bold
 /KrutiDev060BoldItalic
 /KrutiDev060Condensed
 /KrutiDev060Italic
 /KrutiDev060Thin
 /KrutiDev060Wide
 /KrutiDev070
 /KrutiDev070Condensed
 /KrutiDev070Italic
 /KrutiDev070Thin
 /KrutiDev070Wide
 /KrutiDev080
 /KrutiDev080Condensed
 /KrutiDev080Italic
 /KrutiDev080Wide
 /KrutiDev090
 /KrutiDev090Bold
 /KrutiDev090BoldItalic
 /KrutiDev090Condensed
 /KrutiDev090Italic
 /KrutiDev090Thin
 /KrutiDev090Wide
 /KrutiDev100
 /KrutiDev100Bold
 /KrutiDev100BoldItalic
 /KrutiDev100Condensed
 /KrutiDev100Italic
 /KrutiDev100Thin
 /KrutiDev100Wide
 /KrutiDev120
 /KrutiDev120Condensed
 /KrutiDev120Thin
 /KrutiDev120Wide
 /KrutiDev130
 /KrutiDev130Condensed
 /KrutiDev130Thin
 /KrutiDev130Wide
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothic
 /LetterGothic-Bold
 /LetterGothic-BoldOblique
 /LetterGothic-BoldSlanted
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LetterGothic-Slanted
 /LevenimMT
 /LevenimMTBold
 /LilyUPC
 /LilyUPCBold
 /LilyUPCBoldItalic
 /LilyUPCItalic
 /Lithos-Black
 /Lithos-Regular
 /LotusWPBox-Roman
 /LotusWPIcon-Roman
 /LotusWPIntA-Roman
 /LotusWPIntB-Roman
 /LotusWPType-Roman
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Lydian
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /Map-Symbols
 /MathA
 /MathB
 /MathC
 /Mathematica1
 /Mathematica1-Bold
 /Mathematica1Mono
 /Mathematica1Mono-Bold
 /Mathematica2
 /Mathematica2-Bold
 /Mathematica2Mono
 /Mathematica2Mono-Bold
 /Mathematica3
 /Mathematica3-Bold
 /Mathematica3Mono
 /Mathematica3Mono-Bold
 /Mathematica4
 /Mathematica4-Bold
 /Mathematica4Mono
 /Mathematica4Mono-Bold
 /Mathematica5
 /Mathematica5-Bold
 /Mathematica5Mono
 /Mathematica5Mono-Bold
 /Mathematica6
 /Mathematica6Bold
 /Mathematica6Mono
 /Mathematica6MonoBold
 /Mathematica7
 /Mathematica7Bold
 /Mathematica7Mono
 /Mathematica7MonoBold
 /MatisseITC-Regular
 /MaturaMTScriptCapitals
 /Mesquite
 /Mezz-Black
 /Mezz-Regular
 /MICR
 /MicrosoftSansSerif
 /MingLiU
 /Minion-BoldCondensed
 /Minion-BoldCondensedItalic
 /Minion-Condensed
 /Minion-CondensedItalic
 /Minion-Ornaments
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /Miriam
 /MiriamFixed
 /MiriamTransparent
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MonotypeSorts
 /MSAM10
 /MSAM5
 /MSAM6
 /MSAM7
 /MSAM8
 /MSAM9
 /MSBM10
 /MSBM5
 /MSBM6
 /MSBM7
 /MSBM8
 /MSBM9
 /MS-Gothic
 /MSHei
 /MSLineDrawPSMT
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MS-PMincho
 /MSReference1
 /MSReference2
 /MSReferenceSansSerif
 /MSReferenceSansSerif-Bold
 /MSReferenceSansSerif-BoldItalic
 /MSReferenceSansSerif-Italic
 /MSReferenceSerif
 /MSReferenceSerif-Bold
 /MSReferenceSerif-BoldItalic
 /MSReferenceSerif-Italic
 /MSReferenceSpecialty
 /MSSong
 /MS-UIGothic
 /MT-Extra
 /MTExtraTiger
 /MT-Symbol
 /MT-Symbol-Italic
 /MVBoli
 /Myriad-Bold
 /Myriad-BoldItalic
 /Myriad-Italic
 /Myriad-Roman
 /Narkisim
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NewMilleniumSchlbk-BoldItalicSH
 /NewsGothic
 /NewsGothic-Bold
 /NewsGothicBT-Bold
 /NewsGothicBT-BoldItalic
 /NewsGothicBT-Italic
 /NewsGothicBT-Roman
 /NewsGothic-Condensed
 /NewsGothic-Italic
 /NewsGothicMT
 /NewsGothicMT-Bold
 /NewsGothicMT-Italic
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NimbusMonL-Bold
 /NimbusMonL-BoldObli
 /NimbusMonL-Regu
 /NimbusMonL-ReguObli
 /NimbusRomNo9L-Medi
 /NimbusRomNo9L-MediItal
 /NimbusRomNo9L-Regu
 /NimbusRomNo9L-ReguItal
 /NimbusSanL-Bold
 /NimbusSanL-BoldCond
 /NimbusSanL-BoldCondItal
 /NimbusSanL-BoldItal
 /NimbusSanL-Regu
 /NimbusSanL-ReguCond
 /NimbusSanL-ReguCondItal
 /NimbusSanL-ReguItal
 /Nimrod
 /Nimrod-Bold
 /Nimrod-BoldItalic
 /Nimrod-Italic
 /NSimSun
 /Nueva-BoldExtended
 /Nueva-BoldExtendedItalic
 /Nueva-Italic
 /Nueva-Roman
 /NuptialScript
 /OCRA
 /OCRA-Alternate
 /OCRAExtended
 /OCRB
 /OCRB-Alternate
 /OfficinaSans-Bold
 /OfficinaSans-BoldItalic
 /OfficinaSans-Book
 /OfficinaSans-BookItalic
 /OfficinaSerif-Bold
 /OfficinaSerif-BoldItalic
 /OfficinaSerif-Book
 /OfficinaSerif-BookItalic
 /OldEnglishTextMT
 /Onyx
 /OnyxBT-Regular
 /OzHandicraftBT-Roman
 /PalaceScriptMT
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Palatino-Roman
 /PapyrusPlain
 /Papyrus-Regular
 /Parchment-Regular
 /Parisian
 /ParkAvenue
 /Penumbra-SemiboldFlare
 /Penumbra-SemiboldSans
 /Penumbra-SemiboldSerif
 /PepitaMT
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /PhotinaCasualBlack
 /Playbill
 /PMingLiU
 /Poetica-SuppOrnaments
 /PoorRichard-Regular
 /PopplLaudatio-Italic
 /PopplLaudatio-Medium
 /PopplLaudatio-MediumItalic
 /PopplLaudatio-Regular
 /PrestigeElite
 /Pristina-Regular
 /PTBarnumBT-Regular
 /Raavi
 /RageItalic
 /Ravie
 /RefSpecialty
 /Ribbon131BT-Bold
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /Rockwell-Light
 /Rockwell-LightItalic
 /Rod
 /RodTransparent
 /RunicMT-Condensed
 /Sanvito-Light
 /Sanvito-Roman
 /ScriptC
 /ScriptMTBold
 /SegoeUI
 /SegoeUI-Bold
 /SegoeUI-BoldItalic
 /SegoeUI-Italic
 /Serpentine-BoldOblique
 /ShelleyVolanteBT-Regular
 /ShowcardGothic-Reg
 /Shruti
 /SILDoulosIPA
 /SimHei
 /SimSun
 /SimSun-PUA
 /SnapITC-Regular
 /StandardSymL
 /Stencil
 /StoneSans
 /StoneSans-Bold
 /StoneSans-BoldItalic
 /StoneSans-Italic
 /StoneSans-Semibold
 /StoneSans-SemiboldItalic
 /Stop
 /Swiss721BT-BlackExtended
 /Sylfaen
 /Symbol
 /SymbolMT
 /SymbolTiger
 /SymbolTigerExpert
 /Tahoma
 /Tahoma-Bold
 /Tci1
 /Tci1Bold
 /Tci1BoldItalic
 /Tci1Italic
 /Tci2
 /Tci2Bold
 /Tci2BoldItalic
 /Tci2Italic
 /Tci3
 /Tci3Bold
 /Tci3BoldItalic
 /Tci3Italic
 /Tci4
 /Tci4Bold
 /Tci4BoldItalic
 /Tci4Italic
 /TechnicalItalic
 /TechnicalPlain
 /Tekton
 /Tekton-Bold
 /TektonMM
 /Tempo-HeavyCondensed
 /Tempo-HeavyCondensedItalic
 /TempusSansITC
 /Tiger
 /TigerExpert
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldItalicOsF
 /Times-BoldSC
 /Times-ExtraBold
 /Times-Italic
 /Times-ItalicOsF
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Times-RomanSC
 /Trajan-Bold
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-CondensedMedium
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Univers-Bold
 /Univers-BoldItalic
 /UniversCondensed-Bold
 /UniversCondensed-BoldItalic
 /UniversCondensed-Medium
 /UniversCondensed-MediumItalic
 /Univers-Medium
 /Univers-MediumItalic
 /URWBookmanL-DemiBold
 /URWBookmanL-DemiBoldItal
 /URWBookmanL-Ligh
 /URWBookmanL-LighItal
 /URWChanceryL-MediItal
 /URWGothicL-Book
 /URWGothicL-BookObli
 /URWGothicL-Demi
 /URWGothicL-DemiObli
 /URWPalladioL-Bold
 /URWPalladioL-BoldItal
 /URWPalladioL-Ital
 /URWPalladioL-Roma
 /USPSBarCode
 /VAGRounded-Black
 /VAGRounded-Bold
 /VAGRounded-Light
 /VAGRounded-Thin
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VerdanaRef
 /VinerHandITC
 /Viva-BoldExtraExtended
 /Vivaldii
 /Viva-LightCondensed
 /Viva-Regular
 /VladimirScript
 /Vrinda
 /Webdings
 /Westminster
 /Willow
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /WP-ArabicScriptSihafa
 /WP-ArabicSihafa
 /WP-BoxDrawing
 /WP-CyrillicA
 /WP-CyrillicB
 /WP-GreekCentury
 /WP-GreekCourier
 /WP-GreekHelve
 /WP-HebrewDavid
 /WP-IconicSymbolsA
 /WP-IconicSymbolsB
 /WP-Japanese
 /WP-MathA
 /WP-MathB
 /WP-MathExtendedA
 /WP-MathExtendedB
 /WP-MultinationalAHelve
 /WP-MultinationalARoman
 /WP-MultinationalBCourier
 /WP-MultinationalBHelve
 /WP-MultinationalBRoman
 /WP-MultinationalCourier
 /WP-Phonetic
 /WPTypographicSymbols
 /XYATIP10
 /XYBSQL10
 /XYBTIP10
 /XYCIRC10
 /XYCMAT10
 /XYCMBT10
 /XYDASH10
 /XYEUAT10
 /XYEUBT10
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZapfHumanist601BT-Bold
 /ZapfHumanist601BT-BoldItalic
 /ZapfHumanist601BT-Demi
 /ZapfHumanist601BT-DemiItalic
 /ZapfHumanist601BT-Italic
 /ZapfHumanist601BT-Roman
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064506390020064506420627064A064A0633002006390631063600200648063706280627063906290020062706440648062B0627062606420020062706440645062A062F062706480644062900200641064A00200645062C062706440627062A002006270644062306390645062706440020062706440645062E062A064406410629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd00630068002000700072006f002000730070006f006c00650068006c0069007600e90020007a006f006200720061007a006f007600e1006e00ed002000610020007400690073006b0020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003b103be03b903cc03c003b903c303c403b7002003c003c103bf03b203bf03bb03ae002003ba03b103b9002003b503ba03c403cd03c003c903c303b7002003b503c003b903c703b503b903c103b703bc03b103c403b903ba03ce03bd002003b503b303b303c103ac03c603c903bd002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405E605D205D4002005D505D405D305E405E105D4002005D005DE05D905E005D4002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D905D505EA05E8002E002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata pogodnih za pouzdani prikaz i ispis poslovnih dokumenata koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF00410020006800690076006100740061006c006f007300200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d0065006700740065006b0069006e007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200073007a00e1006e0074002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c00200068006f007a006800610074006a00610020006c00e9007400720065002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f0020006e00690065007a00610077006f0064006e00650067006f002000770079015b0077006900650074006c0061006e00690061002000690020006400720075006b006f00770061006e0069006100200064006f006b0075006d0065006e007400f300770020006600690072006d006f0077007900630068002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e007400720075002000760069007a00750061006c0069007a00610072006500610020015f006900200074006900700103007200690072006500610020006c0061002000630061006c006900740061007400650020007300750070006500720069006f0061007201030020006100200064006f00630075006d0065006e00740065006c006f007200200064006500200061006600610063006500720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f043e04340445043e0434044f04490438044500200434043b044f0020043d0430043404350436043d043e0433043e0020043f0440043e0441043c043e044204400430002004380020043f04350447043004420438002004340435043b043e0432044b044500200434043e043a0443043c0435043d0442043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020007000720069006d00650072006e006900680020007a00610020007a0061006e00650073006c006a00690076006f0020006f0067006c00650064006f00760061006e006a006500200069006e0020007400690073006b0061006e006a006500200070006f0073006c006f0076006e0069006800200064006f006b0075006d0065006e0074006f0076002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005400690063006100720069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900720020015f0065006b0069006c006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

