727 research outputs found

    Development of an algebraic turbulence model for analysis of propulsion flows

    Get PDF
    A simple turbulence model that will be applicable to propulsion flows having both wall bounded and unbounded regions was developed and installed within the PARC Navier-Stokes code by linking two existing algebraic turbulence models. The first is the Modified Mixing Length (MML) model which is optimized for wall bounded flows. The second is the Thomas model, the standard algebraic turbulence model in PARC which has been used to calculate both bounded and unbounded turbulent flows but was optimized for the latter. This paper discusses both models and the method employed to link them into one model (referred to as the MMLT model). The PARC code with the MMLT model was applied to two dimensional turbulent flows over a flat plate and over a backward facing step to validate and optimize the model and to compare its predictions to those obtained with the three turbulence models already available in PARC

    An Examination of Parameters Affecting Large Eddy Simulations of Flow Past a Square Cylinder

    Get PDF
    Separated flow over a bluff body is analyzed via large eddy simulations. The turbulent flow around a square cylinder features a variety of complex flow phenomena such as highly unsteady vortical structures, reverse flow in the near wall region, and wake turbulence. The formation of spanwise vortices is often times artificially suppressed in computations by either insufficient depth or a coarse spanwise resolution. As the resolution is refined and the domain extended, the artificial turbulent energy exchange between spanwise and streamwise turbulence is eliminated within the wake region. A parametric study is performed highlighting the effects of spanwise vortices where the spanwise computational domain's resolution and depth are varied. For Re=22,000, the mean and turbulent statistics computed from the numerical large eddy simulations (NLES) are in good agreement with experimental data. Von-Karman shedding is observed in the wake of the cylinder. Mesh independence is illustrated by comparing a mesh resolution of 2 million to 16 million. Sensitivities to time stepping were minimized and sampling frequency sensitivities were nonpresent. While increasing the spanwise depth and resolution can be costly, this practice was found to be necessary to eliminating the artificial turbulent energy exchange

    Comparison of High-Order and Low-Order Methods for Large-Eddy Simulation of a Compressible Shear Layer

    Get PDF
    The objective of this work is to compare a high-order solver with a low-order solver for performing large-eddy simulations (LES) of a compressible mixing layer. The high-order method is the Wave-Resolving LES (WRLES) solver employing a Dispersion Relation Preserving (DRP) scheme. The low-order solver is the Wind-US code, which employs the second-order Roe Physical scheme. Both solvers are used to perform LES of the turbulent mixing between two supersonic streams at a convective Mach number of 0.46. The high-order and low-order methods are evaluated at two different levels of grid resolution. For a fine grid resolution, the low-order method produces a very similar solution to the high-order method. At this fine resolution the effects of numerical scheme, subgrid scale modeling, and filtering were found to be negligible. Both methods predict turbulent stresses that are in reasonable agreement with experimental data. However, when the grid resolution is coarsened, the difference between the two solvers becomes apparent. The low-order method deviates from experimental results when the resolution is no longer adequate. The high-order DRP solution shows minimal grid dependence. The effects of subgrid scale modeling and spatial filtering were found to be negligible at both resolutions. For the high-order solver on the fine mesh, a parametric study of the spanwise width was conducted to determine its effect on solution accuracy. An insufficient spanwise width was found to impose an artificial spanwise mode and limit the resolved spanwise modes. We estimate that the spanwise depth needs to be 2.5 times larger than the largest coherent structures to capture the largest spanwise mode and accurately predict turbulent mixing

    Evaluation of turbulence models in the PARC code for transonic diffuser flows

    Get PDF
    Flows through a transonic diffuser were investigated with the PARC code using five turbulence models to determine the effects of turbulence model selection on flow prediction. Three of the turbulence models were algebraic models: Thomas (the standard algebraic turbulence model in PARC), Baldwin-Lomax, and Modified Mixing Length-Thomas (MMLT). The other two models were the low Reynolds number k-epsilon models of Chien and Speziale. Three diffuser flows, referred to as the no-shock, weak-shock, and strong-shock cases, were calculated with each model to conduct the evaluation. Pressure distributions, velocity profiles, locations of shocks, and maximum Mach numbers in the duct were the flow quantities compared. Overall, the Chien k-epsilon model was the most accurate of the five models when considering results obtained for all three cases. However, the MMLT model provided solutions as accurate as the Chien model for the no-shock and the weak-shock cases, at a substantially lower computational cost (measured in CPU time required to obtain converged solutions). The strong shock flow, which included a region of shock-induced flow separation, was only predicted well by the two k-epsilon models

    Calculation of Turbulent Subsonic Diffuser Flows Using the NPARC Navier-Stokes Code

    Get PDF
    Axisymmetric subsonic diffuser flows were calculated with the NPARC Navier-Stokes code in order to determine the effects various code features have on the flow solutions. The code features examined in this work were turbulence models and boundary conditions. Four turbulence models available in NPARC were used: the Baldwin-Lomax algebraic model, the Baldwin-Barth one-equation model, and the Chien kappa-epsilon and Wilcox kappa-omega two-equation models. The three boundary conditions examined were the free boundary, the mass flux boundary and the subsonic outflow with variable static pressure. In addition to boundary condition type, the geometry downstream of the diffuser was varied to see if upstream influences were present. The NPARC results are compared with experimental data and recommendations are given for using NPARC to compute similar flows

    A comparative study of computational solutions to flow over a backward-facing step

    Get PDF
    A comparative study was conducted for computational fluid dynamic solutions to flow over a backward-facing step. This flow is a benchmark problem, with a simple geometry, but involves complicated flow physics such as free shear layers, reattaching flow, recirculation, and high turbulence intensities. Three Reynolds-averaged Navier-Stokes flow solvers with k-epsilon turbulence models were used, each using a different solution algorithm: finite difference, finite element, and hybrid finite element - finite difference. Comparisons were made with existing experimental data. Results showed that velocity profiles and reattachment lengths were predicted reasonably well by all three methods, while the skin friction coefficients were more difficult to predict accurately. It was noted that, in general, selecting an appropriate solver for each problem to be considered is important

    Targeting the OB-Folds of Replication Protein A with Small Molecules

    Get PDF
    Replication protein A (RPA) is the main eukaryotic single-strand (ss) DNA-binding protein involved in DNA replication and repair. We have identified and developed two classes of small molecule inhibitors (SMIs) that show in vitro inhibition of the RPA-DNA interaction. We present further characterization of these SMIs with respect to their target binding, mechanism of action, and specificity. Both reversible and irreversible modes of inhibition are observed for the different classes of SMIs with one class found to specifically interact with DNA-binding domains A and B (DBD-A/B) of RPA. In comparison with other oligonucleotide/oligosaccharide binding-fold (OB-fold) containing ssDNA-binding proteins, one class of SMIs displayed specificity for the RPA protein. Together these data demonstrate that the specific targeting of a protein-DNA interaction can be exploited towards interrogating the cellular activity of RPA as well as increasing the efficacy of DNA-damaging chemotherapeutics used in cancer treatment

    Numerical Study of Jet Plume Instability from an Overexpanded Nozzle

    Full text link
    Collection of Technical Papers - 45th AIAA Aerospace Sciences Meeting2215720-1573

    Numerical Reconstruction of Ejector Rocket Experimental Tests

    Full text link
    Air ejector rocket systems, typical of combined cycle engines for space propulsion applications, have been studied within the ESA Future European Space Transportation Investigations Program. The description and validationof the computational fluid dynamics (CFD) algorithm that has been tuned to simulate the behavior of these systems, and the numerical rebuilding of the ejector rocket experimental tests that were carried out at TNO in The Netherlands are given. The computational developments being presented target the problem of turbulent mixing layer simulation, which is one of the leading phenomena that govern flow behavior inside an ejector rocket. Comparison between experimental and CFD data is given for two validation test cases: a two-dimensional turbulent mixing layer and an axysimmetric ejector in cold flow. Then, the numerical rebuilding of the ejector rocket experimental tests is presented, and the results are discussed with regard to the comparison between numerical and experimental data

    Exploring the perspectives of healthcare professionals concerning the use and utility of the hospital gown to develop theoretically informed behaviour change interventions

    Get PDF
    The tenets of dignity, safety and privacy are potentially challenged when patients are required to remove their own clothes and wear the hospital gown for medical procedures. This study adopted a mixed method analysis informed by the theoretical domains framework (TDF) of healthcare professionals’ (HCPs’) perspectives (n = 2264) and experiences in relation to the use and utility of the gown. HCPs’ perspectives in relation to the impact of wearing the hospital gown on patient wellbeing and suggested alternatives and/or improvements to the gown were explored. Findings revealed that the gown was often used when it was not medically necessary. The categories of meaning and associated TDF domains were: (1) Adverse impact on patient wellbeing (emotion); (2) Lack of dignity (beliefs about consequences); (3) Increased sense of dependency and vulnerability (social role and identity); (4) Hinders patient autonomy and recovery (beliefs about consequences & reinforcement); (5) Reduced patient mobility (beliefs about consequences); (6) Feeling institutionalised (environmental context and resources, and (7) Positive impact (optimism). The need for alternatives and/or modifications to the gown with a focus on a person-centred approach to its design was emphasised. Obstacles to staff promoting alternatives to the gown and challenges to making institutional changes were identified. Behavioural change interventions aimed at HCPs’ practices associated with the use of the gown are recommended to challenge cultural norms and practices associated with the gown and to improve the patient experience
    corecore