535 research outputs found

    Convergence of linear barycentric rational interpolation for analytic functions

    Get PDF
    Polynomial interpolation to analytic functions can be very accurate, depending on the distribution of the interpolation nodes. However, in equispaced nodes and the like, besides being badly conditioned, these interpolants fail to converge even in exact arithmetic in some cases. Linear barycentric rational interpolation with the weights presented by Floater and Hormann can be viewed as blended polynomial interpolation and often yields better approximation in such cases. This has been proven for differentiable functions and indicated in several experiments for analytic functions. So far, these rational interpolants have been used mainly with a constant parameter usually denoted by d, the degree of the blended polynomials, which leads to small condition numbers but to merely algebraic convergence. With the help of logarithmic potential theory we derive asymptotic convergence results for analytic functions when this parameter varies with the number of nodes. Moreover, we present suggestions on how to choose d in order to observe fast and stable convergence, even in equispaced nodes where stable geometric convergence is provably impossible. We demonstrate our results with several numerical examples

    Linear rational finite differences from derivatives of barycentric rational interpolants

    Get PDF
    Derivatives of polynomial interpolants lead in a natural way to approximations of derivatives of the interpolated function, e.g., through finite differences. We extend a study of the approximation of derivatives of linear barycentric rational interpolants and present improved finite difference formulas arising from these interpolants. The formulas contain the classical finite differences as a special case and are more stable for calculating one-sided derivatives as well as derivatives close to boundaries

    Linear barycentric rational quadrature

    Get PDF
    Linear interpolation schemes very naturally lead to quadrature rules. Introduced in the eighties, linear barycentric rational interpolation has recently experienced a boost with the presentation of new weights by Floater and Hormann. The corresponding interpolants converge in principle with arbitrary high order of precision. In the present paper we employ them to construct two linear rational quadrature rules. The weights of the first are obtained through the direct numerical integration of the Lagrange fundamental rational functions; the other rule, based on the solution of a simple boundary value problem, yields an approximation of an antiderivative of the integrand. The convergence order in the first case is shown to be one unit larger than that of the interpolation, under some restrictions. We demonstrate the efficiency of both approaches with numerical test

    Géopolitique du territoire québécois

    Get PDF

    The linear barycentric rational quadrature method for Volterra integral equations

    Get PDF
    We introduce two direct quadrature methods based on linear rational interpolation for solving general Volterra integral equations of the second kind. The first, deduced by a direct application of linear barycentric rational quadrature given in former work, is shown to converge at the same rate as the rational quadrature rule but is costly on long integration intervals. The second, based on a composite version of this quadrature rule, loses one order of convergence but is much cheaper. Both require only a sample of the involved functions at equispaced nodes and yield an infinitely smooth solution of most classical examples with machine precision
    corecore