

THE LINEAR BARYCENTRIC RATIONAL QUADRATURE
METHOD FOR VOLTERRA INTEGRAL EQUATIONS∗

J.-P. BERRUT†, S. A. HOSSEINI‡ , AND G. KLEIN§

Abstract. We introduce two direct quadrature methods based on linear rational interpolation
for solving general Volterra integral equations of the second kind. The first, deduced by a direct
application of linear barycentric rational quadrature given in former work, is shown to converge at
the same rate as the rational quadrature rule but is costly on long integration intervals. The second,
based on a composite version of this quadrature rule, loses one order of convergence but is much
cheaper. Both require only a sample of the involved functions at equispaced nodes and yield an
infinitely smooth solution of most classical examples with machine precision.

Key words. Volterra integral equations, direct quadrature method, linear barycentric rational
interpolation, linear rational quadrature

AMS subject classifications. 65R20, 45G10

1. Introduction: Volterra integral equations and the direct quadrature
method for their solution. The modeling of certain physical phenomena with
history leads to Volterra integral equations of the second kind,

(1.1) y(t) = f(t) +

∫ t

a

K
(
t, s, y(s)

)
ds,

for the unknown function y(t) given on some interval I := [a, T]. The functions f and
K are assumed here to be known on a discrete subset of I and on Ω := I×I×(−∞,∞),
respectively. In practice, we shall use f and K (except for its third variable) only at
equispaced values of the variables.

Classical theorems, among them the following one, on the existence and unique-
ness of the solution of (1.1) can be found in [8, 21, 24].

Theorem 1.1. Let f be continuous on I, let K be continuous in Ω, and assume
that K satisfies a Lipschitz condition with respect to its third variable. Then (1.1)
possesses a unique continuous solution y. Moreover, this solution is r times continu-
ously differentiable on I whenever f and K are r times continuously differentiable on
I and Ω, respectively.

Most Volterra integral equations must be solved by numerical means. A whole
panoply of methods exists to that end. In some cases, such equations may be beau-
tifully and very efficiently solved globally with spectral methods such as that pre-

†Corresponding author. Department of Mathematics, University of Fribourg, Pérolles, 1700 Fri-
bourg, Switzerland (jean-paul.berrut@unifr.ch). This author’s work was partially supported by the
Swiss National Science Foundation under grant 200020-135319/1.

‡Department of Computer Sciences, Faculty of Sciences, Golestan University, Gorgan, Iran
(ahmad.hosseyni@gmail.com). This author was supported by the Ministry of Science, Research
and Technology of Iran and the program for visiting Ph.D. students of the University of Fribourg.

§Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK (georgesjklein@gmail.
com). This author’s work was partially supported by the Swiss National Science Foundation un-
der grant PBFRP2-142826.

1

Published in
which should be cited to refer to this work.

ht
tp

://
do

c.
re

ro
.c

h
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/20663558?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

sented in [9]. The convergence of such methods is very rapid, usually exponential for
equations involving analytic f and K; moreover, the order adapts automatically to
the degree of smoothness of these data. As generalizations of ordinary differential
equations, however, Volterra integral equations constitute one-directional evolution
problems: the variable t usually is time, and the solution at some value t∗ only de-
pends on the past. Global methods, therefore, are not among the widely used: they
are barely mentioned in books on ordinary differential equations, such as [13], or in
books on Volterra integral equations, such as [8, 21]. Their main drawbacks are that
the functions in the equation must be sampled at points which cluster at the bound-
ary and that a large dense system of (nonlinear) equations must be solved to obtain
the approximate solution. The first is not very natural for a time variable, hinders
the efficient handling of nonboundary steep gradients with a step control procedure,
and requires a start from scratch when one wishes to solve the problem further than
the time limit T fixed at the onset: real-time applications seem hardly possible. The
second brings about the curse of dimensionality, in particular when solving a system
of integral equations.

The quadrature method is the simplest for solving Volterra integral equations.
With it, one seeks an approximation of y only at a finite number of values tm of t,
which we shall call nodes:

ym ≈ y(tm).

We shall take these nodes equispaced: tm := a+mh, h := (T − a)/N , m = 0, . . . , N
(this is not at all necessary, but natural in a first approach); together they yield a
partition TN of [a, T].

Starting from the given value y0 := y(a) = f(a), the integral in (1.1) is replaced

by a quadrature rule of nonzero weights hw
(m)
k and ym is defined as the solution of

the equations

(1.2) ym = f(tm) + h

m∑
k=0

w
(m)
k K(tm, tk, yk), m = 1, . . . , N.

This way, the method merely requires a sample at equispaced values of the arguments
of f and of K (with respect to its first two variables, e.g., with linear equations).
Exponential convergence is then out of reach [25]. Moreover, the method has another
drawback: at step number m, the mere m values y0, . . . , ym−1 are known, so that the
quadrature rule cannot contain more than m + 1 nodes. For the first (small) values
of m, the accuracy of the rule (its order) will be very low, and this lack of precision
will be carried through the whole integration. To avoid this, one considers integrals
involving at least a certain number of subintervals, say, n; then the upper limit in the
sum in (1.2) becomes max{m,n}. As a consequence, the first n equations in (1.2)
all contain the unknowns y1, . . . , yn and must be solved simultaneously, even in the
linear case. This is called the starting procedure of the direct quadrature method and
requires knowledge of K on a discrete subset of the square [a, tn]× [a, tn] (for the first
two variables); the corresponding ym are the starting values.

To study the convergence of the method, [21] introduces some notation; we shall
reproduce the most relevant to the present work. Let C be a class of equations of the
form (1.1). The (global discretization) error in tm is defined as

em := y(tm)− ym, m = 0, . . . , N.

2

ht
tp

://
do

c.
re

ro
.c

h

Definition 1.2. A direct quadrature method (1.2) is convergent if, for all equa-
tions in C, one has for every t ∈ [a, T] fixed with t = tm, for some m, for every
suitable h,

lim
h→0
tm=t

ym = y(t).

It is convergent of order p if

|em| ≤Mhp

for some constant M > 0, and if p is maximal with this property.
Definition 1.3. Let y be the solution of (1.1). The function

δ(h, tm) :=

∫ tm

a

K
(
tm, s, y(s)

)
ds− h

m∑
k=0

w
(m)
k K

(
tm, tk, y(tk)

)
is called the local consistency error for (1.1) at tm.

Definition 1.4. If for every equation in C
lim
h→0

max
0≤m≤N

|δ(h, tm)| = 0,

the approximation method (1.2) is said to be consistent with (1.1) for the class of
equations C. If for every equation in C there exists a constant c (independent of h,
but usually dependent on f and K) such that

max
0≤m≤N

|δ(h, tm)| ≤ chp,

then the method is said to be consistent of order p in C.
Sufficient conditions for the convergence of the direct quadrature method are

given in the following theorem, whose proof is presented in [21, p. 102]; the discussion
following the theorem in that reference implies the last statement.

Theorem 1.5. Consider the approximate solution of (1.1) by (1.2)—taking
max{m,n} as upper limit of the sum, n ∈ N fixed—and assume that C is the class
of equations (1.1) whose kernel K satisfies a Lipschitz condition in the third vari-
able, that the solution y and the kernel K are such that the approximation method is
consistent of order p with (1.1), that the weights satisfy

(1.3) sup
k,m

|w(m)
k | ≤W <∞ for some constant W,

and that the starting errors ek, k = 0, . . . , n, tend to zero as h → 0. Then the
method (1.2) is convergent; moreover, if the starting errors tend to 0 with order p−1,
i.e., if

|em| ≤ cmhp−1, m = 0, . . . , n,

then the order of convergence is at least p.
In order to attain relative machine precision, a direct method (1.2) requires

quadrature rules with large m. In view of their limited convergence and their in-
stability, Newton–Cotes formulae cannot be used. (They do not satisfy (1.3) either.)
One therefore resorts to composite rules [21], with the aesthetic drawback that the

3

ht
tp

://
do

c.
re

ro
.c

h

same one (except the trapezoid) cannot be used throughout the interval, since a rule
is required for every m.

In contrast, we may take advantage of the accuracy and stability of the linear
barycentric quadrature scheme introduced in [20] to apply it to Volterra integral
equations. In section 2, we briefly review some facts on linear barycentric rational
interpolation and the aforementioned quadrature scheme. In the following section, we
describe a global method for the solution of Volterra equations and prove its conver-
gence. This method is very accurate but slow; we therefore present a more efficient
alternative using composite quadrature rules in section 4. For the sake of comparison,
we combine in section 5 our linear rational starting procedure with Gregory quadra-
ture into a hybrid method. We illustrate our theoretical results with some numerical
examples.

2. Barycentric rational interpolation and quadrature. Quadrature meth-
ods are usually based on (linear) interpolants. Here we recall the ideas that have led
to the introduction of linear barycentric rational quadrature in [20]. Let t0, . . . , tm be
m+ 1 real abscissae and g0, . . . , gm corresponding values. (We denote by g the func-
tion to be interpolated or integrated, to avoid confusion with f , the forcing function
in the Volterra integral equation.) A barycentric rational interpolant to these data
will here be an expression of the form

(2.1) rm(t) =

m∑
j=0

βj

t− tj
gj

/
m∑
j=0

βj

t− tj

with all barycentric weights βj �= 0, so that all points are indeed considered in the
interpolant. We shall denote a vector of βj by β. One sees that rm is a rational
function with numerator and denominator both of degree at most m by multiplying
these by

∏m
k=0(t−tk). We refer the reader to [6] for a review on polynomial barycentric

interpolation and to [5] for its rational extension. An important advantage of the
barycentric representation is that it guarantees interpolation independently of the βj .
In [4], the first author has introduced pole-free linear barycentric rational interpolants,
in which the βj depend only on the tj , not on the gj, making rm linear in the latter;
see also [2, 5]. Then every choice β = (β0, . . . , βm)T usually defines another linear
space of interpolants.

In [10], Floater and Hormann have given weights β that, in principle, provide
an arbitrary high rate of convergence. For equispaced nodes, their results may be
summarized as follows: to interpolate a function g ∈ Cd+2[t0, tm], 1 ≤ d ≤ m, with
a rate of convergence ‖g − rm‖∞ = O(hd+1), the weights are simply to be chosen
proportional to

(2.2) βj =
(−1)j−d

2d

∑
i∈Jj

(
d

j − i

)
, Jj :=

{
i ∈ {0, . . . ,m− d} : j − d ≤ i ≤ j

}
;

as mentioned by the authors, these βj differ from 1 only in the vicinity of the extrem-
ities, and the values different from 1 should be considered as endpoint corrections
to the interpolant with all weights equal (d = 0) given in [4]. As mentioned in [10],
the rational interpolants with the weights in (2.2) can be written in a form different
from (2.1), namely,

(2.3) rm(t) =

∑m−d
j=0 λj(t)pj(t)∑m−d

j=0 λj(t)
with λj(t) =

(−1)j
(t− tj) . . . (t− tj+d)

4

ht
tp

://
do

c.
re

ro
.c

h

and where pj is the unique polynomial of degree at most d that interpolates the values
gj , . . . , gj+d at the d + 1 consecutive nodes tj < · · · < tj+d. We shall call this the
original form of the barycentric interpolant with the Floater–Hormann weights.

In [20], two quadrature methods based on rational interpolants (2.1) have been
introduced, called direct, respectively, indirect, rational quadrature. We concentrate
here on the direct version; it simply consists in numerically integrating (2.1), which
is a rational function and thus cannot be integrated analytically without additional
knowledge of its properties, e.g., its poles. The idea in [20] is to take advantage of the
excellent stability properties of the barycentric form (2.1) at any point to integrate
rm with arbitrary precision by means of an efficient nonequispaced quadrature rule
such as Gauss–Legendre or Clenshaw–Curtis.

To obtain the quadrature along this path, we rewrite (2.1) as

(2.4) rm(t) =
m∑

k=0

gk�
(β)
k (t), �

(β)
k (t) :=

βk

t− tk

/
m∑
j=0

βj

t− tj
,

where the superscript (β) refers to the particular choice of the barycentric weights
β0, . . . , βm, and we define the corresponding quadrature weights as

(2.5) ω
(m)
k :=

∫ tm

t0

�
(β)
k (t) dt,

which leads to the quadrature formula:

(2.6) Q =

m∑
k=0

ω
(m)
k gk.

The stability of the quadrature rule can be assessed via the sum of the absolute
values of the quadrature weights (2.5), since this sum is a bound on the amplification
of the imprecision in the data. A crude but sufficient bound for our setting involves
the Lebesgue constant Λm and the Lebesgue function Lm(t) associated with linear
rational interpolation,

(2.7) Λm = max
t0≤t≤tm

Lm(t) = max
t0≤t≤tm

m∑
j=0

∣∣∣∣ βj

t− tj

∣∣∣∣
/∣∣∣∣∣∣

m∑
j=0

βj

t− tj

∣∣∣∣∣∣ .
It thus follows that

(2.8)

m∑
k=0

|ω(m)
k | ≤

∫ tm

t0

m∑
k=0

∣∣∣∣∣∣
βk

t−tk∑m
j=0

βj

t−tj

∣∣∣∣∣∣ dt =
∫ tm

t0

Lm(t) dt ≤ (T − a)Λm.

If all the quadrature weights are positive then the left-hand side is equal to (T −
a). Otherwise, the Lebesgue constant associated with the barycentric interpolation
scheme gives an estimation of the stability of the quadrature rule.

In practice we use the Floater–Hormann weights (2.2); notice that they change
with m. The integrals (2.5) are then computed numerically, for instance, by means of
routines implemented in the Chebfun system [3, 27, 29] or, alternatively, with Gauss–
Legendre (see [14] for a fast implementation) or Clenshaw–Curtis rules (see, e.g., [28]),

to obtain approximate weights ω
(m)D
k to the best possible accuracy; see the appendix

5

ht
tp

://
do

c.
re

ro
.c

h

for a possible implementation in MATLAB. From (2.8), it follows that this quadrature
rule with equispaced nodes is extremely stable as long as d is not taken too large, since
the upper bound on the Lebesgue constant associated with these interpolants contains
a logarithmic factor of m and a factor 2d; see [7].

The convergence of the resulting integration scheme is given by the following
theorem, derived from [20, Thm. 6.1] and [12].

Theorem 2.1. Suppose m and d, d ≤ m/2 − 1, are positive integers, g ∈
Cd+3[t0, tm], and rm is the rational interpolant (2.4) with equispaced nodes tj and β
from (2.2). Then, for any � = 0, . . . ,m,∣∣∣∣ ∫ t�

t0

(
g(t)− rm(t)

)
dt

∣∣∣∣ ≤ Chd+2,

where C is a constant depending only on d, on derivatives of g, and on the length
t� − t0 of the interval.

In all our numerical tests we have chosen a sufficiently high precision for the
computation of the integrals, so that the discretization error essentially stems from the
rational approximation. For that reason we refrain from mentioning the superscript
D in what follows; it should nevertheless be kept in mind.

In practice, we will always take a fixed value of d. This avoids Runge’s phe-
nomenon; see [10].

A result similar to Theorem 2.1 also holds in the case when the number of nodes
m is constant and h shrinks. It will arise in the starting procedure, see section 3,
and also in the composite method, see section 4, where each integral involves a fixed
number n+ 1 of nodes. If g ∈ Cd+2[t0, tm], one obviously has for � = 0, . . . ,m,

(2.9)

∣∣∣∣ ∫ t�

t0

(
g(t)− rm(t)

)
dt

∣∣∣∣ ≤ �h max
t0≤t≤t�

|g(t)− rm(t)| ≤ Chd+2,

where C again is a constant that only depends on d, on derivatives of g, and on
the length of the interval [t0, tm], but not on the number of nodes involved. (We will
denote such generic constants throughout the paper by C.) If m−d is odd, the bound
on the interpolation error, as given in [10, Thm. 2], involves an additional factor mh,
so that one can expect an increase to d+3 of the order of the related quadrature rule,
which is not the case for m− d even.

To close this section, we present a bound on the weights in the above quadrature
method; it will be used to prove the corresponding Theorem 1.5 for the rational
quadrature method.

Proposition 2.2. Suppose m and d, d ≤ m/2 − 1, are positive integers and
let the nodes be equispaced. Then the quadrature weights (2.5) with the barycentric
weights from (2.2) satisfy

(2.10)
∣∣ω(m)

k

∣∣ ≤ Ch, k = 0, . . . ,m,

where the constant C does not depend on m.
Proof. We prove (2.10) for 0 ≤ k ≤ (m + 1)/2, since the quadrature rule is

symmetric; see [20, Thm. 6.3]. By the definition of the weights from (2.2),

(2.11) ω
(m)
k =

∫ tm

t0

βk

t−tk∑m
j=0

βj

t−tj

dt =
2dβk

hdd!

∫ tm

t0

1
t−tk∑m−d

j=0 λj(t)
dt,

6

ht
tp

://
do

c.
re

ro
.c

h

where we switched from the barycentric to the original form (2.3); see [10, sect. 4] for
the explicit relation between both expressions involving the λj and the nonsimplified
barycentric weights. To prove the result, we need to show that the integral in (2.11)
behaves like hd+1. We begin by looking at the two subintervals [tk−1, tk] and [tk, tk+1],
provided they both exist:∫ tk

tk−1

1
t−tk∑m−d

j=0 λj(t)
dt = −

∫ tk

tk−1

t− tk−1

(t− tk−1)(tk − t)
∑m−d

j=0 λj(t)
dt.

The denominator in the integrand of the above right-hand side can be bounded as

(t− tk−1)(tk − t)

∣∣∣∣∣
m−d∑
j=0

λj(t)

∣∣∣∣∣ ≥ 1

d!hd−1
;

see the proof of Theorem 1 in [7]. With the standard estimate of an integral, we
obtain ∣∣∣∣∣

∫ tk

tk−1

1
t−tk∑m−d

j=0 λj(t)
dt

∣∣∣∣∣ ≤ d!hd−1

∫ tk

tk−1

(t− tk−1) dt = d!hd+1/2,

and similarly for [tk, tk+1], so that we may ignore these subintervals in what follows.
In a next step, we split the integral over the whole interval [t0, tm] into three major
parts, namely, [t0, td+1], [td+1, tm−d−1], and [tm−d−1, tm], and treat for each part the
two cases when tk lies inside and outside. For the first major part, let k ≥ d+2; then∫ td+1

t0

1
t−tk∑m−d

j=0 λj(t)
dt =

1∑m−d
j=0 λj(ξ)

∫ td+1

t0

dt

t− tk
=

−1∑m−d
j=0 λj(ξ)

log
(k

k − d− 1

)
for some ξ ∈ [t0, td+1], which follows from the mean value theorem for integrals, since
t − tk does not change its sign in the interval under consideration. The logarithmic
term is bounded from above by log(d+ 2) and the absolute value of the reciprocal of
the sum of the λj by d!hd+1 (see [10]), so that∣∣∣∣∣

∫ td+1

t0

1
t−tk∑m−d

j=0 λj(t)
dt

∣∣∣∣∣ ≤ d!hd+1 log(d+ 2).

If k ∈ [0, d+1], then we also split this first part into three smaller ones, provided they
arise, namely, [t0, tk−1], [tk−1, tk+1], and [tk+1, td+1]. The middle part has already
been dealt with and the two others can be treated in a very similar way as above, so
that the absolute value of the integrals can be shown to be bounded from above by
d!hd+1 log(d+ 2) as well.

The third major part of the interval does not contain tk by assumption. The
absolute value of the integral over that part can again be shown to be bounded by
d!hd+1 log(d+ 2) in a similar fashion as above.

Only the middle major part remains to be treated. We reuse the following nota-
tion introduced in [20]:

Ωm(t) :=

∫ t

td+1

ds∑m−d
j=0 λj(s)

, t ∈ [td+1, tm−d−1].

7

ht
tp

://
do

c.
re

ro
.c

h

As before, we begin with the case k ≤ d and now apply integration by parts:∫ tm−d−1

td+1

1
t−tk∑m−d

j=0 λj(t)
dt =

Ωm(tm−d−1)

tm−d−1 − tk
+

∫ tm−d−1

td+1

Ωm(t)

(t− tk)2
dt.

With the hypothesis on d, the assumption on k made here, and similar arguments as in
the proof of Theorem 6.1 in [20], the absolute value of the first term on the right-hand
side may be bounded from above by Chd+1 with a constant C that does not depend
on m. For the second term, we observe that (t − tk)

2 is positive, so that we may
again apply the mean value theorem for integrals and, after a few basic computations,
bound the absolute value of that term by |Ωm(ξ)|/h for some ξ ∈ [td+1, tm−d−1]. It
was shown in [12] that |Ωm(ξ)| is bounded by Chd+2. Therefore, this second major
part is also bounded by Chd+1 if k /∈ [td+1, tm−d−1]. Otherwise, we split it into three
others, as we did with the first major part, and apply partial integration and similar
arguments as for the previous case for k, to draw the same conclusion. From (2.11)
and the bounds on the three major parts of the integral in that equation, the claimed

bound on |ω(m)
k | follows.

3. The global method. Let TN = {a = t0, . . . , tN = T } be a uniform partition
of the given interval I with the step length h = T−a

N , N ∈ N, as in section 1. Applying
the linear barycentric rational quadrature formula (2.6) to the integral part of (1.1)
yields for m = n+ 1, . . . , N,

(3.1) ym = f(tm) +

m∑
k=0

ω
(m)
k K(tm, tk, yk), with ω

(m)
k =

∫ tm

t0

βk

s−tk∑m
j=0

βj

s−tj

ds,

for the approximation ym of the exact value y(tm). To comply with (1.2), we define

here w
(m)
k := ω

(m)
k /h.

As mentioned in the introduction, a starting procedure must be devised to guar-
antee the adequate accuracy of the first approximate values y0, . . . , yn. We obtain ym,
m ≤ n, by approximating the integral from t0 to tm on its turn with a barycentric
rational quadrature formula (2.6) with the n+1 mesh points t0, . . . , tn. The parame-
ter d is thus bounded by n, see (2.9), which is not a restriction, since n can be chosen
accordingly to the choice of d, and d is usually not taken larger than about 20. This
yields the system of equations

y0 = f(t0),

ym = f(tm) + h

n∑
k=0

w
(m)
k K(tm, tk, yk), m = 1, . . . , n,(3.2)

for y1, . . . , yn, where the quadrature weights for the starting procedure must be taken
as

(3.3) ω
(m)
k :=

∫ tm

t0

βk

s−tk∑n
j=0

βj

s−tj

ds, k = 0, . . . , n,

and the βj depend on n, not on m.
We now study the convergence of this rational global method for Volterra integral

equations of the second kind. We begin with the convergence of the starting values.

8

ht
tp

://
do

c.
re

ro
.c

h

Theorem 3.1. Let yn = (y0, . . . , yn)
T be the approximate starting values, given

by the system (3.2) with the errors en = (e0, . . . , en)
T , and assume that f ∈ Cd+2(I)

and K ∈ Cd+2(Ω) in (1.1) with d ≤ n. Then, as h→ 0, the maximum error ‖en‖∞ →
0 as O(hd+2).

Proof. Theorem 1.1 with the assumptions on f and K imply that y ∈ Cd+2(I).
Applying the linear barycentric rational quadrature formula (2.6) to the integral part
of (1.1) yields at t = tm

y(tm) = f(tm) +

∫ tm

a

K
(
tm, s, y(s)

)
ds

= f(tm) + h

n∑
k=0

w
(m)
k K

(
tm, tk, y(tk)

)
+Rm, m = 1, . . . , n,(3.4)

where Rm is the quadrature error, R0 = 0, and Rm = O(hd+2), which follows
from (2.9) with Theorem 1.1 and Theorem 2 of [10]. Subtracting (3.2) from (3.4)
gives

em = h
n∑

k=0

w
(m)
k

[
K

(
tm, tk, y(tk)

)−K(tm, tk, yk)
]
+Rm

= h

n∑
k=0

w
(m)
k

∂

∂y
K(tm, tk, ξk)ek +Rm, m = 1, . . . , n,(3.5)

where we used the mean value theorem with ξk between y(tk) and yk. To write this
in vector form, we introduce the matrix Wn := (wm,k)

n
k,m=0, whose entries are given

by wm,k = w
(m)
k

∂
∂yK(tm, tk, ξk). Then (3.5) may be written as

(3.6) (In − hWn)en = Rn,

where Rn := (R0, . . . , Rn)
T and In is the (n+1)× (n+1) identity matrix. Note that

we take the exact solution at the left end of the interval, so that e0 = 0.
We now show that the matrix hWn may be made smaller than 1 in norm by

choosing h small enough. To this end, we rewrite the quadrature weights (3.3) with
the change of variable v = (s− a)/(mh) as

(3.7) ω
(m)
k = mh

∫ 1

0

βk

vm−k∑n
j=0

βj

vm−j

dv.

Notice that in the starting procedure, n is fixed and only h is variable. Thus the

(n + 1)2 weights w
(m)
k = ω

(m)
k /h have a maximum absolute value, and also the

∂
∂yK(tm, tk, ξk) because of the differentiability hypothesis on K, so that there is a

constant V1 such that ‖Wn‖∞ ≤ V1n. Since n is fixed, h‖Wn‖∞ may be made as
small as necessary by diminishing h. With h small enough and by a well-known result
(e.g., [1, Thm. 7.11]), In − hWn in (3.6) is nonsingular, so that

en = (In − hWn)
−1Rn,

and there is a constant V2 such that

‖(In − hWn)
−1‖∞ ≤ 1

1− h‖Wn‖∞ ≤ V2.

Therefore ‖en‖∞ ≤ V2‖Rn‖∞ = O(hd+2).

9

ht
tp

://
do

c.
re

ro
.c

h

Our main theorem now follows from Theorems 1.5, 2.1, and 3.1 and Proposi-
tion 2.2. We observe that, in order for the consistency condition in Theorem 1.5 to
hold, Theorem 2.1 requires f ∈ Cd+3(I) and K ∈ Cd+3(Ω); see Theorem 1.1. No-
tice that an argument similar to the discussion accompanying (2.9) also holds for the
computation of the first few ym with m > n, so that d ≤ n+ 1 is the only restriction
on d for the claimed order of convergence to hold.

Theorem 3.2. Let n and d, d ≤ n + 1, be positive integers, let the nodes be
equispaced, and f ∈ Cd+3(I) and K ∈ Cd+3(Ω) in (1.1). Consider the approximate
solution of (1.1) by (3.1) and (3.2). If the parameter in the computation of the
starting values is at least d− 1 and the consecutive approximations are computed with
parameter d, then the method is convergent of order d+ 2.

We can construct an infinitely smooth approximate solution on the whole interval
[a, T] by interpolating the discrete approximations y0, . . . , yN with a linear barycentric
rational interpolant (2.1) and the weights from (2.2). Under the hypotheses of Theo-
rem 3.2 and with the choice d+ 1 of the parameter in that interpolant, the absolute
maximum error of that global approximation rN will behave as

‖y − rN‖∞ ≤ max
a≤t≤T

∣∣∣∣∣y(t)−
∑N

j=0
βj

t−tj
y(tj)∑N

j=0
βj

t−tj

∣∣∣∣∣
+ max

a≤t≤T

∣∣∣∣∣
∑N

j=0
βj

t−tj
y(tj)∑N

j=0
βj

t−tj

−
∑N

j=0
βj

t−tj
yj∑N

j=0
βj

t−tj

∣∣∣∣∣
≤ Chd+2 + ΛN max

0≤j≤N
|y(tj)− yj|

≤ C log(N)hd+2,(3.8)

where ΛN is the Lebesgue constant associated with rN (see (2.7)), which grow loga-
rithmically with N , and C again is a generic constant that does not depend on N .
The order of convergence of the rational interpolant of the exact values of y to y is
guaranteed by the hypotheses of Theorem 3.2 together with Theorem 1.1.

4. A composite method. As mentioned in section 3, the global method re-
quires computing m + 1 new quadrature weights for every ym. Since the number N
of integrals increases like 1/h as h decreases, the computational cost of these weights
grows with N . To remedy this, we present a cheaper method, based on composite lin-
ear barycentric rational quadrature, to obtain an approximate solution of (1.1) with
a simpler structure while retaining good approximation properties.

Let TN again be a uniform partition of the interval I. To define our composite
rational quadrature rule over an interval [a, tm] with m ≤ N , we choose a value of the
parameter d, a fixed number n of nodes with d ≤ n ≤ m/2 for the local quadrature
rule, and we set p :=
m/n�− 1. It can easily be seen from (3.7) that the quadrature

weights w
(m)
k are scale and translation invariant. We may therefore approximate a

definite integral with the following composite rule:∫ tm

t0

g(t) dt =

p−1∑
j=0

∫ t(j+1)n

tjn

g(t) dt+

∫ tm

tpn

g(t) dt

≈ h

p−1∑
j=0

n∑
k=0

w
(n)
k g(tjn+k) + h

m−pn∑
k=0

w
(m−pn)
k g(tpn+k).(4.1)

10

ht
tp

://
do

c.
re

ro
.c

h

The last sum is longer, in fact, up to twice as long, than the others to guarantee similar
approximation and stability properties over the whole interval. From this construction
and since each local quadrature formula has an error O(hd+2), if g ∈ Cd+2[t0, tm],
see (2.9), n is fixed, and there are p + 1 = O(h−1) integrals to be computed; this
composite rule behaves as follows.

Proposition 4.1. Suppose m, n, n ≤ m, and d, d ≤ n, are positive integers,
g ∈ Cd+2[t0, tm]. Then the absolute error in the approximation of the integral of g
with the composite quadrature rule (4.1) and equispaced nodes is bounded by Chd+1,
where the constant C depends only on d, on derivatives of g, and on the interval length
tm − a.

Moreover, if n − d is odd, one can expect the order of convergence to be up to
one unit larger than stated above, for the reasons mentioned just after (2.9).

The composite method for the solution of the Volterra integral equation of the
second kind (1.1) is now quite simple. The starting procedure described in section 3
remains unchanged, so that the starting values are again given by the solution of the
system (3.2). Thereafter, for the computation of ym for n < m < 2n, we continue in
the same way as with the global method from section 3. Only for m ≥ 2n do we start
applying the composite quadrature rule to the integral part of (1.1) as in (4.1), with
the same n as for the starting procedure, so that
(4.2)

ym = f(tm)+h

p−1∑
j=0

n∑
k=0

w
(n)
k K(tm, tjn+k, yjn+k)+h

m−pn∑
k=0

w
(m−pn)
k K(tm, tpn+k, ypn+k).

The composite method is very similar to the global one, except that the order of
consistency is typically one less than that of the global method under the same hy-
potheses. Consequently, the following result can be proved with the same ingredients
as Theorem 3.2 and the help of Proposition 4.1.

Theorem 4.2. Let n and d, d ≤ n, be positive integers, let the nodes be equi-
spaced, and let f ∈ Cd+2(I) and K ∈ Cd+2(Ω) in (1.1). Consider the approximate
solution of (1.1) by (3.2) and the composite method (4.2). If the parameter in the
computation of the starting values is at least d−1 and if the subsequent approximations
are computed with parameter d, then the method is convergent of order d+ 1.

Again, the order might be up to one unit larger if n− d is odd and n ≥ 2(d+ 1).
Here also, an infinitely smooth approximate solution can be obtained by interpolating
the discrete approximations y0, . . . , yN by a linear barycentric rational interpolant
with the parameter d if n − d is even, and d + 1 otherwise, provided f and K are
sufficiently smooth. The reason for this choice of parameter can easily be deduced
from (3.8).

5. Hybrid methods. A natural question about the methods presented in sec-
tions 3 and 4 is how they compare with some existing ones. Among those requiring
only a sample of values of f and K at equispaced nodes, Gregory quadrature is well
suited for such a comparison. However, it does not yield a starting procedure using
only such values: more sophisticated methods are usually used, such as Runge–Kutta
ones [18]. The quality of the results with our linear rational methods leads us to
suggest hybrid methods, consisting of our rational starting procedure combined with
any other efficient quadrature method for equispaced nodes. The resulting values can
then again be interpolated with a linear rational interpolant.

The convergence of such a method simply follows from weak assumptions on the
quadrature rule used after the starting procedure.

11

ht
tp

://
do

c.
re

ro
.c

h

Proposition 5.1. Let Q be the quadrature rule that defines the hybrid method,
with bounded quadrature weights. Let n and d, d ≤ n, be positive integers, let the nodes
be equispaced, let f ∈ Cd+1(I) and K ∈ Cd+1(Ω) in (1.1), and let f and K fulfill the
conditions for Q to have convergence order d+ 2. Consider the approximate solution
of (1.1) by (3.2) and the quadrature rule Q. If the parameter in the computation of
the starting values is at least d − 1, then the hybrid method is convergent of order
d+ 2.

The hybrid method that we will use in the following section is based on Gregory
quadrature; see [15] for an explicit construction and [22, 23] for elegant error bounds.
To every order of convergence D there corresponds a Gregory rule. According to
Proposition 5.1 and [22, 23], for the corresponding hybrid method to converge with
order d + 2, it is sufficient that f ∈ Cd+2(I) and K ∈ Cd+2(Ω). The quadrature
weights are bounded for any such order D, since the quadrature weights are all equal
to 1 except those 2D − 2 corresponding to the nodes near the extremities of the
interval, if the number of nodes is larger than 2D − 2. This method is now quite
efficient; the weights can be computed with next to no effort, the order can be made
fairly large, and the regularity conditions on f and K are relatively low. Methods
based on Gregory rules have a long tradition; see, e.g., [11, 26].

6. Numerical experiments. In this section we present some numerical results
of our global and composite methods, with various values of d, n, and N , applied
to linear and nonlinear Volterra integral equations, to demonstrate the efficiency and
accuracy of the schemes. We add the results from the hybrid method with the Gregory
quadrature rule and the same parameters. The weights in the Gregory quadrature
rule were computed with a short code given in course notes by Bengt Fornberg. Our
main goal in displaying the results with the hybrid method is to provide a well-studied
method of reference—except for the starting procedure—to situate the performance
of the rational method among existing ones. For a given choice of the parameter d, the
starting values are computed with parameter d−1, since this is sufficient according to
the hypotheses of Theorems 3.2 and 4.2. Notice that the regularity of f and K only
gives an upper bound on d, in addition to the one from the number of nodes, and that d
can be chosen much smaller if necessary, e.g., to guarantee stability. The interpolation
of the discrete approximation of the solution is carried out with parameter d+1 except
for the composite method when n− d is even. For every example, the approximation
quality is revealed via eS , the maximal absolute error of the approximation of the n+1
starting values, and eN , the error at t = tN , the extremity of the whole interval. To
convey an impression of the approximation throughout the interval, we also display
in the tables the maximal absolute error eI of the interpolation of the approximations
ym, m = 0, . . . , N , evaluated at about 3000 equispaced points of the interval. In the
rows labeled W , we give ‖Wn‖∞ from the proof of Theorem 3.1, which is sufficiently
small in all our examples, so that the order of convergence predicted by Theorem 3.1
for the staring values can actually be observed in practice. Moreover, we display
the respective experimental approximation orders, OS for the starting procedure, ON

for the approximation of y(tN), and OI for the interpolation. We took advantage
of Chebfun for the computation of the quadrature weights; see the appendix for the
corresponding code.

As a first example, we consider the integral equation

(6.1) y(t) = f(t) +

∫ t

−1

1 + 25t2

1 + 25s2
y(s) ds, t ∈ [−1, 1],

12

ht
tp

://
do

c.
re

ro
.c

h

Table 6.1

Numerical results for example (6.1) with d = 3 and n = 4.

N 10 20 40 80 160 320 640

Starting

procedure

eS 1.8e−02 6.4e−05 1.6e−06 7.3e−08 4.0e−09 2.3e−10 1.4e−11
OS 8.1 5.3 4.5 4.2 4.1 4.0
W 2.2 2.5 3.2 3.6 3.8 3.9 4.0

Global
method

eN 1.4e−00 3.4e−02 6.8e−05 1.4e−08 3.5e−10 1.0e−11 3.1e−13
ON 5.4 9.0 12.3 5.3 5.1 5.0
eI 1.4e−00 3.4e−02 1.5e−04 4.5e−06 1.4e−07 4.5e−09 1.4e−10
OI 5.4 7.8 5.1 5.0 5.0 5.0

Composite

method

eN 2.1e−00 2.8e−01 9.6e−03 4.0e−05 9.9e−10 3.8e−11 1.2e−12
ON 2.9 4.9 7.9 15.3 4.7 4.9
eI 2.1e−00 2.8e−01 9.6e−03 4.0e−05 3.9e−07 4.5e−08 4.7e−10
OI 2.9 4.9 7.9 6.7 4.8 5.0

Hybrid

method

eN 5.2e−01 2.0e−03 1.3e−07 5.0e−09 2.4e−10 8.3e−12 2.7e−13
ON 8.0 13.9 4.7 4.4 4.8 4.9
eI 5.3e−01 4.6e−03 2.2e−04 7.9e−06 2.5e−07 8.0e−09 2.5e−10
OI 6.8 4.6 4.8 4.9 5.0 5.0

where

f(t) =
1

1 + 25t2
− t

2
− (

1 + 25t2
)(1

10
arctan(5t) +

1

10
arctan(5) +

1

52

)
.

The solution is Runge’s function y(t) = 1/(1 + 25t2). Table 6.1 shows the numerical
results with d = 3 and n = 4. Since n− d is odd, we took the parameter d+1 for the
interpolation of the values obtained with our methods. The errors decrease with N
until about machine precision, as predicted by the theoretical results, and there is no
Runge phenomenon, which does not occur with this kind of rational interpolants and
fixed d (see [10]), nor with the Gregory rule. The starting values are approximated
with parameter dS = 2, and the observed order is 4, which is dS + 2, as one should
expect from Theorem 3.1. The errors by the global method decrease with order 5, as
well as their interpolation with d = 4, as predicted by Theorem 3.2 and the remark
following it. The composite method and the interpolation with d = 4 of the discrete
solution behave similarly since n−d is odd (see Theorem 4.2), but with slightly larger
errors. The errors with the hybrid method are similar to those with the rational
methods for large N and even smaller with low values of N ; the order is about 5 as
given by Theorem 5.1 applied to this particular method. The computation time with
the composite and hybrid methods is significantly shorter than with the global one,
though. With this example the absolute error in the ym is maximal in the middle of
the interval, where Runge’s function has its maximal curvature.

Next we study the classical test example from [8, Tab. 8.2.3a],

(6.2) y(t) =
1

2
t2e−t +

1

2

∫ t

0

(t− s)2es−ty(s) ds, t ∈ [0, 6],

with the exact solution y(t) = 1
3 (1 − e−

3
2 t(cos(

√
3
2 t) +

√
3 sin(

√
3
2 t))). We display the

results from our methods with d = 3 and n = 7 in Table 6.2. Again, they match the
theoretical expectations very well. This time, n − d is even and therefore the order
with the composite method is only 4. Our methods give similar results as in [8] and
remain stable even with large numbers of nodes.

13

ht
tp

://
do

c.
re

ro
.c

h

Table 6.2

Numerical results for example (6.2) with d = 3 and n = 7.

N 10 20 40 80 160 320 640

Starting

procedure

eS 2.0e−01 1.4e−03 3.4e−05 1.1e−06 3.9e−08 1.4e−09 4.6e−11
OS 7.1 5.4 5.0 4.8 4.8 4.9
W 1.4e+01 1.2e−00 6.0e−01 2.2e−01 6.6e−02 1.8e−02 4.8e−03

Global
method

eN 6.6e−02 4.2e−04 9.5e−06 2.5e−07 6.6e−09 1.8e−10 5.3e−12
ON 7.3 5.5 5.3 5.2 5.2 5.1
eI 2.4e−01 2.0e−03 6.2e−05 2.4e−06 8.8e−08 3.2e−09 1.1e−10
OI 6.9 5.0 4.7 4.7 4.8 4.8

Composite

method

eN 6.6e−02 4.3e−04 9.3e−06 4.7e−07 2.9e−08 1.9e−09 1.3e−10
ON 7.3 5.2 4.6 3.8 4.0 3.8
eI 2.2e−01 2.1e−03 8.7e−05 4.6e−06 2.6e−07 1.5e−08 9.1e−10
OI 6.7 4.6 4.2 4.1 4.1 4.1

Hybrid

method

eN 6.6e−02 4.6e−04 1.2e−05 3.8e−07 1.2e−08 3.6e−10 1.1e−11
ON 7.2 5.2 5.0 5.0 5.0 5.0
eI 2.4e−01 2.0e−03 5.8e−05 2.0e−06 6.9e−08 2.3e−09 7.2e−11
OI 6.9 5.1 4.8 4.9 4.9 5.0

Table 6.3

Numerical results for example (6.3) with d = 6 and n = 8.

N 10 20 40 80 160 320 640

Starting

procedure

eS 1.8e−00 1.4e−03 2.0e−06 5.0e−09 1.6e−11 5.4e−14 4.4e−16
OS 10.4 9.4 8.7 8.3 8.2 6.9
W 107.6 12.4 5.4 3.8 4.2 4.6 4.9

Global
method

eN 2.4e−01 2.0e−04 3.4e−07 2.9e−09 1.4e−11 6.2e−14 3.1e−15
ON 10.2 9.2 6.9 7.7 7.9 4.3
eI 2.1e−00 1.5e−03 2.2e−06 8.8e−09 5.1e−11 2.9e−13 1.2e−14
OI 10.5 9.4 8.0 7.4 7.5 4.5

Composite

method

eN 2.4e−01 2.0e−04 2.9e−07 2.2e−09 8.7e−12 3.0e−14 1.8e−15
ON 10.2 9.4 7.0 8.0 8.2 4.1
eI 2.1e−00 1.5e−03 2.2e−06 7.2e−09 3.0e−11 2.0e−13 1.2e−14
OI 10.5 9.4 8.3 7.9 7.2 4.1

Hybrid
method

eN 2.4e−01 1.4e−04 9.2e−07 6.4e−09 3.1e−11 1.4e−13 4.4e−16
ON 10.7 7.3 7.2 7.7 7.8 8.2
eI 2.2e−00 1.6e−03 2.9e−06 9.5e−09 3.7e−11 1.5e−13 8.4e−15
OI 10.5 9.1 8.3 8.0 8.0 4.1

We also studied the classical nonlinear Volterra integral equation

(6.3) y(t) = e−t +

∫ t

0

es−t
(
y(s) + e−y(s)

)
ds, t ∈ [0, 10],

from [8, 19] with the exact solution y(t) = log(t+e). To solve the nonlinear system for
the starting values and the nonlinear equations for the subsequent approximations, we
used Newton’s method, which is applicable, since we anyway need to impose enough
differentiability of the involved functions to satisfy the hypotheses of our theoretical
results. Table 6.3 shows the absolute errors and the estimated approximation orders
of the proposed methods with d = 6 and n = 8. Here we achieve higher orders
than in the cited references. Moreover, the errors with the composite method are at
least as small as those obtained from the global and hybrid methods and, due to the
high order, they reach machine precision with N = 640, which explains some smaller
experimental orders in the last column of the table.

The presented methods can also handle oscillatory kernels; we emphasize, how-
ever, that there are more efficient methods for highly oscillatory problems; see, e.g., [30].

14

ht
tp

://
do

c.
re

ro
.c

h

10
2

10
3

10
−10

10
−5

10
0

e
S

e(C)
N

e(H)
N

e(C)
I

e(H)
I

O(h11)

Fig. 6.1. Numerical results for example (6.4) with n = 15 and d = 9, where eS is the error in
the starting values, the superscript (H) refers to the hybrid method and (C) to the composite method,
and the subscript N refers to the error in the final value yN and I to the error of the interpolated
numerical solution.

We studied the equation
(6.4)

y(t) = cos(ωt) +
λ

ω2 − λ2

(
cos(ωt)− cos(λt)

)
+

∫ t

0

sin
(
λ(t− s)

)
y(s) ds, t ∈ [0, 2],

with ω = 50 and λ = 100, whose exact solution is y(t) = cos(ωt). The function
f and the kernel are very smooth, so that we can choose rather large values of the
parameters: we took n = 15 and d = 9. For this example, we compared the composite
method with the hybrid one, since a relatively large number of nodes was necessary to
make the error decrease to nearly machine precision, and the global rational method
was too expensive for that. The results for increasing values of N are shown in
Figure 6.1. As soon as the number of nodes is sufficiently large, the errors decrease
rapidly. We observe again the similarity in the quality of approximation of the two
methods.

The theoretical results in sections 3–5 show that the order of convergence of the
method is limited by the differentiability of the function f and of the kernel K. We
demonstrate this by means of the equation

(6.5) y(t) = f(t) +

∫ t

0

cos(t+ s)y(s) ds, t ∈ [0, 1],

where f(t) is given by (1.1) and the exact solution by y(t) = (t − c)3, 0 ≤ t ≤ c, and
y(t) = (t− c)4, c < t ≤ 1. In (6.5), f and y are only twice continuously differentiable
with a third derivative of bounded variation. In our tests, we took n = 10, d = 5, and
c =

√
2/6 to avoid that the discontinuity be on a node, and to have it close enough to

the left extremity of the interval, so that one can see two different error behaviors in

15

ht
tp

://
do

c.
re

ro
.c

h

10
2

10
−10

e
S

e(G)
N

e(C)
N

e(H)
N

e(G)
I

e(C)
I

e(H)
I

O(h3)

O(h6)

Fig. 6.2. Numerical results for example (6.5) with n = 10 and d = 5, where the meaning of the
labels is the same as in Figure 6.1, except for the superscript (G), which refers to the global rational
method.

the starting values y1, . . . , yn; see Figure 6.2. Indeed, as long as the starting procedure
involves nodes on each side of the singularity t = c, the order is small because of the
limited smoothness of f . Once h is small enough, the starting procedure only involves
nodes to the left of the singularity, where f is infinitely smooth, and the observed
order in the starting values is d+1 = 6, as predicted by the theory for that case. The
order of the interpolation of the overall solution is 3, while that of the values given
by the three methods at the end of the interval is somewhat larger than 3, even a
bit larger than what our theoretical results predict in this case; one can nevertheless
clearly see the impact of the discontinuity in the third derivative.

As a final example, we solved the classical stiff nonlinear Volterra integral equation
from [16, 8],

y(t) = f(t)− 10

∫ t

0

1 + t

1 + s
y2(s) ds, t ∈ [0, 19],

where

f(t) =
(
(1 + t)e−10t + 1

) 1
2 + (1 + t)(1− e−10t) + 10(1 + t) log(1 + t)

and with the exact solution y(t) = ((1+ t)e−10t+1)
1
2 . A Volterra integral equation is

called stiff [8] when ∂K/∂y
 0 or the Lipschitz constant of the kernel with respect
to y is large; in this example ∂K/∂y = −20. We refrain from providing a table here,
as the relative error with the rational methods jumps from about 100%, as long as
N is too small to resolve the stiffness, to the unavoidable rounding error when N
becomes large enough to accommodate the exponentially decaying solution. Instead,
we illustrate with one sample that our rather general purpose composite rational
method is stable enough to resolve even stiff equations until close to machine precision.

16

ht
tp

://
do

c.
re

ro
.c

h

With N = 2000, n = 10, and d = 5, we observed eS = 7.0e−09, eN = 4.8e−14, and
eI = 4.5e−08. With the hybrid method, we found eN = 1.0e−13 and eI = 1.6e−08.
With this method, however, the error does not exhibit a jump in its decay as the
composite rational method, but starts decreasing with smaller values of N already.
We did not carry out experiments with the global method on this example, as the
computation time and cost would have been excessively high, whereas the composite
method combined with Newton’s method was still very fast.

7. Conclusion. We have presented two versions of an elegant and efficient
quadrature method, based on linear barycentric rational interpolation, for the nu-
merical solution of Volterra integral equations. For the sake of comparison, we have
also suggested and tested a further method, namely, the combination of our linear
rational starting procedure with Gregory quadrature for the main integration. The
resulting method is in most cases as good as the global method to a much lesser
cost. Like classical quadrature methods using composite Newton–Cotes rules, the
input merely consists of a sample at equispaced values of the arguments of f and
K. The global version is especially elegant, as it integrates a single infinitely smooth
interpolant on every interval. The composite version is slightly more involved, but
much faster on long intervals. Both deliver an infinitely smooth approximation of the
solution. The order may in principle be increased at will.

Every linear barycentric rational quadrature rule is based on the integration of
the corresponding linear rational interpolant. Interpolation of the discrete solution
therefore is straightforward. This may be of great help to devise a control mechanism
of the step size to accommodate difficult stretches of the kernel or of the solution,
such as steep gradients.

As other methods for such integral equations, it would be a little harder to im-
plement when K was merely known on the triangle a ≤ s ≤ t ≤ T : a smaller interval
length h would have to be used in the starting procedure than in the main method.
Further questions to address in the future include the stability behavior; see [8, 17].

Appendix. Computation of the rational quadrature weights. We give
one possibility of computing the rational quadrature weights (2.5) using Chebfun [29]
in MATLAB. Yet another possibility among many is to compute the integrals of the

rational fundamental functions �
(β)
k via Gauss–Legendre quadrature with sufficiently

many points (usually 500–1000, depending on the involved parameters), which can
be done efficiently, e.g., with the method from [14], also provided in the Chebfun
toolbox. Computing the integrals with such a quadrature method can be faster than
with Chebfun, since the rational interpolant does not need to be first approximated
globally, but merely needs to be evaluated.
function omega = ratquadwts(x, d)

% Computation of the rational quadrature weights.

n = length(x) − 1;

w = fhbarywts(x, d);

omega = zeros(size(x));

f = omega;

for k = 1:(ceil(n/2) + 1)

f(k) = 1;

omega([k n+2−k]) = sum(chebfun(@(z) bary(z,f,x,w), x([1, n+1])));

f(k) = 0;
end

17

ht
tp

://
do

c.
re

ro
.c

h

function w = fhbarywts(x, d)

% Computation of the Floater--Hormann barycentric weights.

n = length(x) − 1;

w = zeros(size(x));

for k = 1:(n+1)

for m = (k−d):k
if (m < 1 || m > n + 1 − d), continue, end

jj = m:(m+d);

product = 1./prod(x(k)−x(jj(jj∼=k)));
w(k) = w(k) + (−1)̂m∗product;

end

end

Acknowledgments. The authors gratefully thank Bengt Fornberg for sending
them his lecture notes on Gregory quadrature, as well as Nick Hale for his advice. We
thank the referees for their insightful comments, which helped to enhance the paper.

REFERENCES

[1] K. E. Atkinson, An Introduction to Numerical Analysis, John Wiley, New York, 1978
[2] R. Baltensperger, J.-P. Berrut, and B. Noël, Exponential convergence of a linear rational

interpolant between transformed Chebyshev points, Math. Comp., 68 (1999), pp. 1109–1120.
[3] Z. Battles and L. N. Trefethen, An extension of MATLAB to continuous functions and

operators, SIAM J. Sci. Comput., 25 (2004), pp. 1743–1770.
[4] J.-P. Berrut, Rational functions for guaranteed and experimentally well-conditioned global

interpolation, Comput. Math. Appl., 15 (1988), pp. 1–16.
[5] J.-P. Berrut, R. Baltensperger, and H. D. Mittelmann, Recent developments in barycen-

tric rational interpolation, in Trends and Applications in Constructive Approximation,
M. G. de Bruin, D. H. Mache, and J. Szabados, eds., Internat. Ser. Numer. Math. 151,
Birkhäuser, Basel, 2005, pp. 27–51.

[6] J.-P. Berrut and L. N. Trefethen, Barycentric Lagrange interpolation, SIAM Rev., 46
(2004), pp. 501–517.

[7] L. Bos, S. De Marchi, K. Hormann, and G. Klein, On the Lebesgue constant of barycentric
rational interpolation at equidistant nodes, Numer. Math., 121 (2012), pp. 461–471.

[8] H. Brunner and P. J. van der Houwen, The Numerical Solution of Volterra Equations, CWI
Monogr., North-Holland, Amsterdam, 1986.

[9] T. A. Driscoll, Automatic spectral collocation for integral, integro-differential, and integrally
reformulated differential equations, J. Comput. Phys., 229 (2010), pp. 5980–5998.

[10] M. S. Floater and K. Hormann, Barycentric rational interpolation with no poles and high
rates of approximation, Numer. Math., 107 (2007), pp. 315–331.

[11] L. Fox and E. T. Goodwin, The numerical solution of non-singular linear integral equations,
Philos. Trans. R. Soc. Lond., 245 (1953), pp. 501–534.

[12] S. Güttel and G. Klein, Efficient high-order rational integration and deferred correction with
equispaced data, submitted.

[13] E. Hairer, S. P. Nørsett, and G. Wanner, Solving Ordinary Differential Equations. I.
Nonstiff Problems, Springer, Berlin, 1987.

[14] N. Hale and A. Townsend, Fast and accurate computation of Gauss–Legendre and Gauss–
Jacobi quadrature nodes and weights, SIAM J. Sci. Comput., 35 (2013), pp. A652–A674.

[15] F. B. Hildebrand, Introduction to Numerical Analysis, McGraw-Hill, New York, 1956.
[16] F. de Hoog and R. Weiss, Implicit Runge–Kutta methods for second kind Volterra integral

equations, Numer. Math., 23 (1975), pp. 199–213.
[17] S. A. Hosseini and A. Abdi, On the numerical stability of the linear barycentric rational

quadrature method for Volterra integral equations, in preparation.
[18] S. A. Isaacson and R. M. Kirby, Numerical solution of linear Volterra integral equations of

the second kind with sharp gradients, J. Comput. Appl. Math., 235 (2011), pp. 4283–4301.
[19] G. Izzo, E. Russo, and C. Chiapparelli, Highly stable Runge–Kutta methods for Volterra

integral equations, Appl. Numer. Math., 62 (2012), pp. 1002–1013.

18

ht
tp

://
do

c.
re

ro
.c

h

[20] G. Klein and J.-P. Berrut, Linear barycentric rational quadrature, BIT, 52 (2012), pp. 407–
424.

[21] P. Linz, Analytical and Numerical Methods for Volterra Equations, SIAM, Philadelphia, 1985.
[22] E. Martensen, Optimale Fehlerschranken für die Quadraturformel von Gregory, ZAMM, 44

(1964), pp. 159–168.
[23] E. Martensen, Zur Restglieddarstellung der Gregoryschen Quadraturformel ungerader Ord-

nung, Numer. Math. 15 (1970), pp. 229–233.
[24] D. O’Regan and M. Meehan, Existence Theory for Nonlinear Integral and Integro-Differential

Equations, Kluwer Academic, Dordrecht, The Netherlands, 1998.
[25] R. B. Platte, L. N. Trefethen, and A. B. J. Kuijlaars, Impossibility of fast stable approxi-

mation of analytic functions from equispaced samples, SIAM Rev., 53 (2011), pp. 308–318.
[26] J. Steinberg, Numerical solution of Volterra integral equation, Numer. Math., 19 (1972),

pp. 212–217.
[27] L. N. Trefethen, Computing numerically with functions instead of numbers, Math. Comput.

Sci., 1 (2007), pp. 9–19.
[28] L. N. Trefethen, Is Gauss quadrature better than Clenshaw–Curtis?, SIAM Rev., 50 (2008),

pp. 67–87.
[29] L. N. Trefethen and others, Chebfun Version 4.2, The Chebfun Development Team,

http://www.maths.ox.ac.uk/chebfun/ (2011).
[30] S. Xiang and H. Brunner, Efficient methods for Volterra integral equations with highly os-

cillatory Bessel kernels, BIT, 53 (2013), pp. 241–263.

19

ht
tp

://
do

c.
re

ro
.c

h

