127 research outputs found

    Molecular mechanisms of HIV-1 persistence in the monocyte-macrophage lineage

    Get PDF
    The introduction of the highly active antiretroviral therapy (HAART) has greatly improved survival. However, these treatments fail to definitively cure the patients and unveil the presence of quiescent HIV-1 reservoirs like cells from monocyte-macrophage lineage. A purge, or at least a significant reduction of these long lived HIV-1 reservoirs will be needed to raise the hope of the viral eradication. This review focuses on the molecular mechanisms responsible for viral persistence in cells of the monocyte-macrophage lineage. Controversy on latency and/or cryptic chronic replication will be specifically evoked. In addition, since HIV-1 infected monocyte-macrophage cells appear to be more resistant to apoptosis, this obstacle to the viral eradication will be discussed. Understanding the intimate mechanisms of HIV-1 persistence is a prerequisite to devise new and original therapies aiming to achieve viral eradication

    Increased HCMV seroprevalence in patients with hepatocellular carcinoma.

    Get PDF
    International audienceABSTRACT: BACKGROUND: Hepatocellular carcinoma (HCC) is the most common primary liver cancer, usually arising after years of chronic liver inflammation that could result from viral infections such as hepatitis B virus (HBV) and hepatitic C virus (HCV) infections. Human cytomegalovirus (HCMV) infects primary human hepatocytes and remains an important cause of morbidity in immunocompromised persons where it may manifest as symptomatic end-organ disease including hepatitis. The goal of the present study was to determine a potential correlation between HCMV infection and the appearance of HCC. METHODS: First, we analyzed the seroprevalence of HCMV in a cohort of 11,318 patients hospitalized between 2003 and 2009 in different departments of a French University Hospital. Second, we studied HCMV seroprevalence in a cohort of 190 subjects who were stratified on the basis of age, gender, HCC, cirrhosis (Cir), and the exposition to hepatotropic viruses (HCV, HBV). We further determined whether HCMV DNA was present specifically in tumour area in liver biopsies from HCC-positive patients by using nested PCR. RESULTS: We found that the HCMV seroprevalence was high in the Hepatology department. The HCMV seroprevalence was significantly higher in patients infected with HCV and/or HBV than in patients who were not infected by those later viruses (76.2% versus 56.5%, p < 0.001). The HCMV seroprevalence was significantly higher in patients with HCC (74%) and lower in patients without HCC (54% for HCC-/Cir+ patients, 57% for HCC-/Cir- subjects). We observed a positive correlation between serum IL-6 levels and HCMV seroprevalence in cirrhotic patients, but not in HCC patients. Serum IL-6 levels correlated positively with C-reactive protein (CRP) levels. Preliminary histological studies from liver biopsies from HCC-positive patients highlighted that HCMV DNA can be detected in tumour area of some of the patients studied. CONCLUSIONS: Our results indicate that HCMV seroprevalence in patients with HCC is significantly higher than in patients without HCC, is positively correlated with serum IL-6 levels in cirrhotic patients, and is positively associated with the presence of other hepatotropic viruses such as HCV and HBV

    Cytomegalovirus and Tumors: Two Players for One Goal-Immune Escape

    Get PDF
    Cytomegalovirus (CMV) and the human tumor cell share the same objectives: escape the recognition and destruction by the immune system and establish a state of immune tolerance conducive for their development. For early tumor development, the escape of the first lines of defense of the immune surveillance is a critical step which determines survival or destruction. The presence of CMV on the tumor site and its involvement in carcinogenesis as initiator or promoter is increasingly documented. In this article, we highlight the similarity between mechanisms used by tumors and CMV to circumvent the immune defenses and evade from immune surveillance. We suggest that CMV and tumors help one another for their common objective. CMV gets shelter in immunologically poor environment of the tumor cells. In return CMV, by acting directly on the cancer cell and/or on the tumor microenvironment, provides the tumor cell the ways to promote its immune escape and development of immune tolerance

    Limited HIV-1 Reactivation in Resting CD4+ T cells from Aviremic Patients under Protease Inhibitors.

    Full text link
    peer reviewedA latent viral reservoir that resides in resting CD4+ T cells represents a major barrier for eradication of HIV infection. We test here the impact of HIV protease inhibitor (PI) based combination anti-retroviral therapy (cART) over nonnucleoside reverse transcriptase inhibitor (NNRTI)-based cART on HIV-1 reactivation and integration in resting CD4+ T cells. This is a prospective cohort study of patients with chronic HIV-1 infection treated with conventional cART with an undetectable viremia. We performed a seven-year study of 47 patients with chronic HIV-infection treated with cART regimens and with undetectable plasma HIV-1 RNA levels for at least 1 year. Of these 47 patients treated with cART, 24 were treated with a PI-based regimen and 23 with a NNRTI-based regimen as their most recent treatment for more than one year. We evaluated the HIV-1 reservoir using reactivation assay and integrated HIV-1 DNA, respectively, in resting CD4+ T cells. Resting CD4+ T cells isolated from PI-treated patients compared to NNRTI-treated patients showed a limited HIV-1 reactivation upon T-cell stimulation (p = 0.024) and a lower level of HIV-1 integration (p = 0.024). Our study indicates that PI-based cART could be more efficient than NNRTI-based cART for limiting HIV-1 reactivation in aviremic chronically infected patients

    Macrophage signaling in HIV-1 infection

    Get PDF
    The human immunodeficiency virus-1 (HIV-1) is a member of the lentivirus genus. The virus does not rely exclusively on the host cell machinery, but also on viral proteins that act as molecular switches during the viral life cycle which play significant functions in viral pathogenesis, notably by modulating cell signaling. The role of HIV-1 proteins (Nef, Tat, Vpr, and gp120) in modulating macrophage signaling has been recently unveiled. Accessory, regulatory, and structural HIV-1 proteins interact with signaling pathways in infected macrophages. In addition, exogenous Nef, Tat, Vpr, and gp120 proteins have been detected in the serum of HIV-1 infected patients. Possibly, these proteins are released by infected/apoptotic cells. Exogenous accessory regulatory HIV-1 proteins are able to enter macrophages and modulate cellular machineries including those that affect viral transcription. Furthermore HIV-1 proteins, e.g., gp120, may exert their effects by interacting with cell surface membrane receptors, especially chemokine co-receptors. By activating the signaling pathways such as NF-kappaB, MAP kinase (MAPK) and JAK/STAT, HIV-1 proteins promote viral replication by stimulating transcription from the long terminal repeat (LTR) in infected macrophages; they are also involved in macrophage-mediated bystander T cell apoptosis. The role of HIV-1 proteins in the modulation of macrophage signaling will be discussed in regard to the formation of viral reservoirs and macrophage-mediated T cell apoptosis during HIV-1 infection

    The macrophage in HIV-1 infection: From activation to deactivation?

    Get PDF
    Macrophages play a crucial role in innate and adaptative immunity in response to microorganisms and are an important cellular target during HIV-1 infection. Recently, the heterogeneity of the macrophage population has been highlighted. Classically activated or type 1 macrophages (M1) induced in particular by IFN-γ display a pro-inflammatory profile. The alternatively activated or type 2 macrophages (M2) induced by Th-2 cytokines, such as IL-4 and IL-13 express anti-inflammatory and tissue repair properties. Finally IL-10 has been described as the prototypic cytokine involved in the deactivation of macrophages (dM). Since the capacity of macrophages to support productive HIV-1 infection is known to be modulated by cytokines, this review shows how modulation of macrophage activation by cytokines impacts the capacity to support productive HIV-1 infection. Based on the activation status of macrophages we propose a model starting with M1 classically activated macrophages with accelerated formation of viral reservoirs in a context of Th1 and proinflammatory cytokines. Then IL-4/IL-13 alternatively activated M2 macrophages will enter into the game that will stop the expansion of the HIV-1 reservoir. Finally IL-10 deactivation of macrophages will lead to immune failure observed at the very late stages of the HIV-1 disease

    Tumors and Cytomegalovirus: An Intimate Interplay

    No full text
    Human cytomegalovirus (HCMV) is a herpesvirus that alternates lytic and latent infection, infecting between 40 and 95% of the population worldwide, usually without symptoms. During its lytic cycle, HCMV can result in fever, asthenia, and, in some cases, can lead to severe symptoms such as hepatitis, pneumonitis, meningitis, retinitis, and severe cytomegalovirus disease, especially in immunocompromised individuals. Usually, the host immune response keeps the virus in a latent stage, although HCMV can reactivate in an inflammatory context, which could result in sequential lytic/latent viral cycles during the lifetime and thereby participate in the HCMV genomic diversity in humans and the high level of HCMV intrahost genomic variability. The oncomodulatory role of HCMV has been reported, where the virus will favor the development and spread of cancerous cells. Recently, an oncogenic role of HCMV has been highlighted in which the virus will directly transform primary cells and might therefore be defined as the eighth human oncovirus. In light of these new findings, it is critical to understand the role of the immune landscape, including the tumor microenvironment present in HCMV-harboring tumors. Finally, the oncomodulatory/oncogenic potential of HCMV could lead to the development of novel adapted therapeutic approaches against HCMV, especially since immunotherapy has revolutionized cancer therapeutic strategies and new therapeutic approaches are actively needed, particularly to fight tumors of poor prognosis

    High-Risk Oncogenic Human Cytomegalovirus

    No full text
    Human cytomegalovirus (HCMV) is a herpesvirus that infects between 40% and 95% of the population worldwide, usually without symptoms. The host immune response keeps the virus in a latent stage, although HCMV can reactivate in an inflammatory context, which could result in sequential lytic/latent viral cycles during the lifetime and thereby participate in HCMV genomic diversity in humans. The high level of HCMV intra-host genomic variability could participate in the oncomodulatory role of HCMV where the virus will favor the development and spread of cancerous cells. Recently, an oncogenic role of HCMV has been highlighted in which the virus will directly transform primary cells; such HCMV strains are named high-risk (HR) HCMV strains. In light of these new findings, this review defines the criteria that characterize HR-HCMV strains and their molecular as well as the phenotypic impact on the infected cell and its tumor microenvironment
    • …
    corecore