6,418 research outputs found
Is the Mott transition relevant to f-electron metals ?
We study how a finite hybridization between a narrow correlated band and a
wide conduction band affects the Mott transition. At zero temperature, the
hybridization is found to be a relevant perturbation, so that the Mott
transition is suppressed by Kondo screening. In contrast, a first-order
transition remains at finite temperature, separating a local moment phase and a
Kondo- screened phase. The first-order transition line terminates in two
critical endpoints. Implications for experiments on f-electron materials such
as the Cerium alloy CeLaTh are discussed.Comment: 5 pages, 3 figure
Interplane charge dynamics in a valence-bond dynamical mean-field theory of cuprate superconductors
We present calculations of the interplane charge dynamics in the normal state
of cuprate superconductors within the valence-bond dynamical mean-field theory.
We show that by varying the hole doping, the c-axis optical conductivity and
resistivity dramatically change character, going from metallic-like at large
doping to insulating-like at low-doping. We establish a clear connection
between the behavior of the c-axis optical and transport properties and the
destruction of coherent quasiparticles as the pseudogap opens in the antinodal
region of the Brillouin zone at low doping. We show that our results are in
good agreement with spectroscopic and optical experiments.Comment: 5 pages, 3 figure
Optical Response of SrRuO Reveals Universal Fermi-liquid Scaling and Quasiparticles Beyond Landau Theory
We report optical measurements demonstrating that the low-energy relaxation
rate () of the conduction electrons in SrRuO obeys scaling
relations for its frequency () and temperature () dependence in
accordance with Fermi-liquid theory. In the thermal relaxation regime,
1/\tau\propto (\hbar\omega)^2 + (p\pi\kB T)^2 with , and
scaling applies. Many-body electronic structure calculations using dynamical
mean-field theory confirm the low-energy Fermi-liquid scaling, and provide
quantitative understanding of the deviations from Fermi-liquid behavior at
higher energy and temperature. The excess optical spectral weight in this
regime provides evidence for strongly dispersing "resilient" quasiparticle
excitations above the Fermi energy
- …