4,537 research outputs found

    Akn 564: an unusual component in the X-ray spectra of NLSy1 galaxies

    Get PDF
    We present an ASCA observation of the NLSy1 Ark 564. The X-ray light curve shows rapid variability, but no evidence for energy-dependence to these variations, within the 0.6 -- 10 keV bandpass. A strong (EW ~ 70 eV) spectral feature is observed close to 1 keV. A similar feature has been observed in TON S180 (another NLSy1) but has not been observed in broad-line Seyfert galaxies. The feature energy suggests a large contribution from Fe L-shell lines but its intensity is difficult to explain in terms of emission and/or absorption from photoionized gas. Models based on gas in thermal equilibrium with kT ~1 keV provide an alternative parameterization of the soft spectrum. The latter may be interpreted as the hot intercloud medium, undergoing rapid cooling and producing strong Fe L-shell recombination lines. In all cases the physical conditions are rather different from those observed in broad-line Seyferts. The hard X-ray spectrum shows a broad and asymmetric Fe Kalpha line of large equivalent width (~550 eV) which can be explained by a neutral disk viewed at ~ 60 degrees to the line-of-sight, contrary to the hypothesis that NLSy1s are viewed pole-on. The large EW of this line, the strong 1 keV emission and the strong optical Fe emission lines all suggest an extreme Fe abundance in this and perhaps other NLSy1s.Comment: 15 pages, 5 figures. LaTeX with encapsulated postscript. Accepted for publication in the Astrophysical Journa

    ASCA observations of type-2 Seyfert galaxies: II. The Importance of X-ray Scattering and Reflection

    Full text link
    We discuss the importance of X-ray scattering and Compton reflection in type-2 Seyfert galaxies, based upon the analysis of ASCA observations of 25 such sources. Consideration of the iron Kalpha, [O III] line and X-ray variability suggest that NGC 1068, NGC 4945, NGC 2992, Mrk 3, Mrk 463E and Mrk 273 are dominated by reprocessed X-rays. We examine the properties of these sources in more detail. We find that the iron Kalpha complex contains significant contributions from neutral and high-ionization species of iron. Compton reflection, hot gas and starburst emission all appear to make significant contributions to the observed X-ray spectra. Mrk 3 is the only source in this subsample which does not have a significant starburst contamination. The ASCA spectrum below 3 keV is dominated by hot scattering gas with U_X ~ 5, N_H ~ 4 x 10^23 cm^-2. This material is more highly ionized than the zone of material comprising the warm absorber seen in Seyfert~1 galaxies, but may contain a contribution from shock-heated gas associated with the jet. Estimates of the X-ray scattering fraction cover 0.25 - 5%. The spectrum above 3 keV appears to be dominated by a Compton reflection component although there is evidence that the primary continuum component becomes visible close to 10 keV.Comment: 27 pages, 6 figures. LaTeX with encapsulated postscript. To appear in the Astrophysical Journal. Also available via http://lheawww.gsfc.nasa.gov/~george/papers/gnt_s2p2/abstract.htm

    Evidence for Orbital Motion of Material Close to the Central Black Hole of Mrk 766

    Full text link
    Time-resolved X-ray spectroscopy has been obtained for the narrow line Seyfert galaxy Mrk766 from XMM-Newton observations. We present analysis in the energy-time plane of EPIC pn data in the 4-8 keV band with energy resolution R~50. A component of Fe Ka emission detected in the maps shows a variation of photon energy with time that appears both to be statistically significant and to be consistent with sinusoidal variation. We investigate the interpretation that there exists a component of line emission from matter in a Keplerian orbit around a supermassive black hole. The orbit has a period ~165 ks and a line-of-sight velocity ~13,500 km/s. This yields a lower limit for the central mass of M > 4.9x10^5 solar masses within a radius of 3.6 x 10^13 cm (2.4 A.U.). The orbit parameters are consistent with higher black hole masses, but the lack of any substantial gravitational redshift of the orbit implies an upper limit to the black hole mass of 4.5x10^7 solar masses.Comment: 20 pages, 6 figures (some colour). Accepted for publication in A&A. Only minor changes since V1 (including reordering of Figs 1a & b

    A Highly Doppler Blueshifted Fe-K Emission Line in the High-Redshift QSO PKS 2149-306

    Full text link
    We report the results from an \asca observation of the QSO PKS 2149-306 (z=2.345). We detect an emission line centered at 17\sim 17 keV in the quasar frame. Line emission at this energy has not been observed in any other active galaxy or quasar to date. We present evidence rejecting the possibility that this line is the result of instrumental artifacts, or a serendipitous source. The most likely explanation is blueshifted Fe-K emission (the EW is 300+/-200 eV, QSO frame). Bulk velocities of the order of 0.75c are implied by the data. We show that Fe-K line photons originating in an accretion disk and Compton-scattering off a leptonic can account for the emission line. Curiously, if the emission-line feature recently discovered in another quasar PKS 0637-752, z=0.654z=0.654, is blueshifted Ovii, the Doppler factor is the same (~2.7) for both.Comment: 15 pages plus 3 figures. Latex with separate .ps files (Accepted by Astrophysical Journal Letters

    The XMM-Newton Iron Line Profile of NGC 3783

    Full text link
    We report on observations of the iron K line in the nearby Seyfert 1 galaxy, NGC 3783, obtained in a long, 2 orbit (240 ks) XMM-Newton observation. The line profile obtained exhibits two strong narrow peaks at 6.4 keV and at 7.0 keV, with measured line equivalent widths of 120 and 35 eV respectively. The 6.4 keV emission is the K-alpha line from near neutral Fe, whilst the 7.0 keV feature probably originates from a blend of the neutral Fe K-beta line and the H-like line of Fe at 6.97 keV. The relatively narrow velocity width of the K-alpha line (<5000 km/s), its lack of response to the continuum emission on short timescales and the detection of a neutral Compton reflection component are all consistent with a distant origin in Compton-thick matter such as the putative molecular torus. A strong absorption line from highly ionized iron (at 6.67 keV) is detected in the time-averaged iron line profile, whilst the depth of the feature appears to vary with time, being strongest when the continuum flux is higher. The iron absorption line probably arises from the highest ionization component of the known warm absorber in NGC 3783, with an ionization of logxi=3 and column density of 5x10^{22}cm{-2} and may originate from within 0.1pc of the nucleus. A weak red-wing to the iron K line profile is also detected below 6.4 keV. However when the effect of the highly ionized warm absorber on the underlying continuum is taken into account, the requirement for a relativistic iron line component from the inner disk is reduced.Comment: 34 pages, including 11 figures. Accepted for publication in Ap

    Variable iron-line emission near the black hole of Markarian 766

    Get PDF
    We investigate the link between ionised Fe X-ray line emission and continuum emission in the bright nearby AGN, Mrk 766. A new long (433 ks) XMM-Newton observation is analysed, together with archival data from 2000 and 2001. The contribution from ionised line emission is measured and its time variations on short (5-20 ks) timescales are correlated with the continuum emission. The ionised line flux is found to be highly variable and to be strongly correlated with the continuum flux, demonstrating an origin for the ionised line emission that is co-located with the continuum emission. Most likely the emission is ionised reflection from the accretion disc within a few A.U. of the central black hole, and its detection marks the first time that such an origin has been identified other than by fitting to spectral line profiles. Future observations may be able to measure a time lag and hence achieve reverberation mapping of AGN at X-ray energies.Comment: Accepted for publication, Astronomy and Astrophysics letter
    corecore