11 research outputs found
Dosimetry during intramedullary nailing of the tibia: Patient and occupational exposure
Background Intramedullary nailing under fluoroscopic guidance is a common operation. We studied the intraoperative radiation dose received by both the patient and the personnel
Detection and Localisation of Abnormal Parathyroid Glands: An Explainable Deep Learning Approach
Parathyroid scintigraphy with 99mTc-sestamibi (MIBI) is an established technique for localising abnormal parathyroid glands (PGs). However, the identification and localisation of PGs require much attention from medical experts and are time-consuming. Artificial intelligence methods can offer an assisting solution. This retrospective study enrolled 632 patients who underwent parathyroid scintigraphy with double-phase and thyroid subtraction techniques. The study proposes a three-path approach, employing the state-of-the-art convolutional neural network called VGG19. Images input to the model involved a set of three scintigraphic images in each case: MIBI early phase, MIBI late phase, and 99mTcO4 thyroid scan. A medical expert’s diagnosis provided the ground truth for positive/negative results. Moreover, the visualised suggested areas of interest produced by the Grad-CAM algorithm are examined to evaluate the PG-level agreement between the model and the experts. Medical experts identified 545 abnormal glands in 452 patients. On a patient basis, the deep learning (DL) model attained an accuracy of 94.8% (sensitivity 93.8%; specificity 97.2%) in distinguishing normal from abnormal scintigraphic images. On a PG basis and in achieving identical positioning of the findings with the experts, the model correctly identified and localised 453/545 glands (83.1%) and yielded 101 false focal results (false positive rate 18.23%). Concerning surgical findings, the expert’s sensitivity was 89.68% on patients and 77.6% on a PG basis, while that of the model reached 84.5% and 67.6%, respectively. Deep learning in parathyroid scintigraphy can potentially assist medical experts in identifying abnormal findings
Explainable Artificial Intelligence Method (ParaNet+) Localises Abnormal Parathyroid Glands in Scintigraphic Scans of Patients with Primary Hyperparathyroidism
The pre-operative localisation of abnormal parathyroid glands (PG) in parathyroid scintigraphy is essential for suggesting treatment and assisting surgery. Human experts examine the scintigraphic image outputs. An assisting diagnostic framework for localisation reduces the workload of physicians and can serve educational purposes. Former studies from the authors suggested a successful deep learning model, but it produced many false positives. Between 2010 and 2020, 648 participants were enrolled in the Department of Nuclear Medicine of the University Hospital of Patras, Greece. An innovative modification of the well-known VGG19 network (ParaNet+) is proposed to classify scintigraphic images into normal and abnormal classes. The Grad-CAM++ algorithm is applied to localise the abnormal PGs. An external dataset of 100 patients imaged at the same department who underwent parathyroidectomy in 2021 and 2022 was used for evaluation. ParaNet+ agreed with the human readers, showing 0.9861 on a patient-level and 0.8831 on a PG-level basis under a 10-fold cross-validation on the training set of 648 participants. Regarding the external dataset, the experts identified 93 of 100 abnormal patient cases and 99 of 118 surgically excised abnormal PGs. The human-reader false-positive rate (FPR) was 10% on a PG basis. ParaNet+ identified 99/100 abnormal cases and 103/118 PGs, with an 11.2% FPR. The model achieved higher sensitivity on both patient and PG bases than the human reader (99.0% vs. 93% and 87.3% vs. 83.9%, respectively), with comparable FPRs. Deep learning can assist in detecting and localising abnormal PGs in scintigraphic scans of patients with primary hyperparathyroidism and can be adapted to the everyday routine
Detection and Localisation of Abnormal Parathyroid Glands: An Explainable Deep Learning Approach
Parathyroid scintigraphy with 99mTc-sestamibi (MIBI) is an established technique for localising abnormal parathyroid glands (PGs). However, the identification and localisation of PGs require much attention from medical experts and are time-consuming. Artificial intelligence methods can offer an assisting solution. This retrospective study enrolled 632 patients who underwent parathyroid scintigraphy with double-phase and thyroid subtraction techniques. The study proposes a three-path approach, employing the state-of-the-art convolutional neural network called VGG19. Images input to the model involved a set of three scintigraphic images in each case: MIBI early phase, MIBI late phase, and 99mTcO4 thyroid scan. A medical expert’s diagnosis provided the ground truth for positive/negative results. Moreover, the visualised suggested areas of interest produced by the Grad-CAM algorithm are examined to evaluate the PG-level agreement between the model and the experts. Medical experts identified 545 abnormal glands in 452 patients. On a patient basis, the deep learning (DL) model attained an accuracy of 94.8% (sensitivity 93.8%; specificity 97.2%) in distinguishing normal from abnormal scintigraphic images. On a PG basis and in achieving identical positioning of the findings with the experts, the model correctly identified and localised 453/545 glands (83.1%) and yielded 101 false focal results (false positive rate 18.23%). Concerning surgical findings, the expert’s sensitivity was 89.68% on patients and 77.6% on a PG basis, while that of the model reached 84.5% and 67.6%, respectively. Deep learning in parathyroid scintigraphy can potentially assist medical experts in identifying abnormal findings
Patient and staff dosimetry in vertebroplasty
Study Design. Eleven vertebroplasty operations were studied in terms of
radiation dose.
Objective. Doses to patients and staff associated with vertebroplasty
were measured. Occupational doses were compared with the annual dose
limits, and the effectiveness of the used radiation protection means was
estimated. Patient dose was estimated by means of both surface and
effective dose, and the radiation-induced risk was evaluated.
Summary of Background Data. Vertebroplasty is a recent minimally
invasive technique for the restoration of vertebral body fractures. It
involves fluoroscopic exposure, and so, it demands dose measurements for
both patient and staff exposed to radiation.
Methods. Thermoluminescent dosimeters (TLDs) were placed on the medical
personnel and the effective dose was derived. Slow films were placed to
patients’ skin to measure entrance surface dose. Furthermore, a Rando
phantom loaded with TLDs was irradiated under conditions simulating
vertebroplasty, in order to estimate effective dose to the patient.
Results. Mean fluoroscopy time was 27.7 minutes. Patient’s mean skin
dose was 688 mGy, while effective dose was calculated to be 34.45 mGy.
It was estimated that the primary operator can perform about 150
vertebroplasty operations annually without exceeding the annual dose
constraints, whereas occupational dose can be reduced by 76% using
mobile shielding.
Conclusions. Measures have to be taken to reduce patient’s skin dose,
which, in extreme cases, may be close to deterministic effects
threshold. The highest dose rates, recorded during the procedure, were
found for primary operator’s hands and chest when no shielding was used