68 research outputs found

    Conservation Laws and Hamilton's Equations for Systems with Long-Range Interaction and Memory

    Full text link
    Using the fact that extremum of variation of generalized action can lead to the fractional dynamics in the case of systems with long-range interaction and long-term memory function, we consider two different applications of the action principle: generalized Noether's theorem and Hamiltonian type equations. In the first case, we derive conservation laws in the form of continuity equations that consist of fractional time-space derivatives. Among applications of these results, we consider a chain of coupled oscillators with a power-wise memory function and power-wise interaction between oscillators. In the second case, we consider an example of fractional differential action 1-form and find the corresponding Hamiltonian type equations from the closed condition of the form.Comment: 30 pages, LaTe

    Fokker-Planck Equation with Fractional Coordinate Derivatives

    Full text link
    Using the generalized Kolmogorov-Feller equation with long-range interaction, we obtain kinetic equations with fractional derivatives with respect to coordinates. The method of successive approximations with the averaging with respect to fast variable is used. The main assumption is that the correlator of probability densities of particles to make a step has a power-law dependence. As a result, we obtain Fokker-Planck equation with fractional coordinate derivative of order 1<α<21<\alpha<2.Comment: LaTeX, 16 page

    The Physics of Chaos in Hamiltonian Systems

    Get PDF

    Anomalous transport in Charney-Hasegawa-Mima flows

    Full text link
    Transport properties of particles evolving in a system governed by the Charney-Hasegawa-Mima equation are investigated. Transport is found to be anomalous with a non linear evolution of the second moments with time. The origin of this anomaly is traced back to the presence of chaotic jets within the flow. All characteristic transport exponents have a similar value around μ=1.75\mu=1.75, which is also the one found for simple point vortex flows in the literature, indicating some kind of universality. Moreover the law γ=μ+1\gamma=\mu+1 linking the trapping time exponent within jets to the transport exponent is confirmed and an accumulation towards zero of the spectrum of finite time Lyapunov exponent is observed. The localization of a jet is performed, and its structure is analyzed. It is clearly shown that despite a regular coarse grained picture of the jet, motion within the jet appears as chaotic but chaos is bounded on successive small scales.Comment: revised versio

    Chaotic Jets

    Full text link
    The problem of characterizing the origin of the non-Gaussian properties of transport resulting from Hamiltonian dynamics is addressed. For this purpose the notion of chaotic jet is revisited and leads to the definition of a diagnostic able to capture some singular properties of the dynamics. This diagnostic is applied successfully to the problem of advection of passive tracers in a flow generated by point vortices. We present and discuss this diagnostic as a result of which clues on the origin of anomalous transport in these systems emerge.Comment: Proceedings of the workshop Chaotic transport and complexity in classical and quantum dynamics, Carry le rouet France (2002
    corecore