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        3. Chaotic dynamics can be considered as a physical phenomenon that bridges the  
regular evolution of systems with the random one. These two alternative states of  
physical processes are, typically, described by the corresponding alternative methods: 
quasiperiodic or other regular functions in the first case, and kinetic or other probabilistic 
equations in the second case. What kind of kinetics should be  for chaotic dynamics that 
is intermediate between completely regular (integrable)  and completely random (noisy) 
cases? What features of the dynamics and in what way should they be represented in the 
kinetics of chaos? These are the subjects of the research under our project, where the new 
concept of fractional kinetics is reviewed for systems with Hamiltonian chaos. 
Particularly, we show how the notions of dynamical quasi-traps, Poincare recurrences, 
Levy flights, exit time distributions, phase space topology prove to be important in the 
construction of   kinetics. The concept of fractional kinetics enters a different area of 
applications, such as particle dynamics in different potentials, particle advection in fluids, 
plasma physics and fusion devices, quantum optics, and many others. New characteristics 
of the kinetics are involved to fractional kinetics and the most  important are anomalous 
transport, superdiffusion, weak mixing, and others. The fractional kinetics does not look 
as the usual one since some moments of the distribution function are infinite and 
fluctuations from the equilibrium state do not  have any finite time of relaxation. 
Different important physical phenomena: cooling  of particles and signals, particle and 
wave traps, Maxwell's Demon, etc. represent some domains where fractional kinetics 
proves to be valuable. 
 
       4. All proposed goals were completed and achieved. 
 



       5. A new theory of anomalous transport was developed and applied to tokamak  
plasma. The materials were published in a book and 23 papers. Here is formulation of 
these results. 
 
5a. In Hamiltonian dynamics chaotic trajectories can be characterized by a non-zero 
Lyapunov exponent. In general case of random dynamics the Lyapunov exponent can be 
close to zero because of the stickiness, or simply zero, as in the case of pseudochaos. 
Kinetic description of such situations is based on scaling properties of the dynamics in 
both space and time. It is shown for different models including the ergodic layer and 
magnetic surfaces, that the ergodic theorem cannot be applied for the observed data, and 
that weak mixing leads to unusual macroscopic behavior. Such phenomenon as 
Maxwell's Demon obtains a natural realization as a persistent fluctuation that does not 
decay in an exponential way as in the kinetics of the Gaussian type . 
 
5b. We describe a wide class of systems, which corresponds to the random non-chaotic 
dynamics with zero Lyapunov exponents. We call this type of dynamics pseudochaos and 
show that the corresponding kinetic description of such systems can be developed in the 
frame of the so-called fractional kinetics with space-time self-similarity. Numerous 
simulations and some analytical predictions display unusual features of the pseudochaos. 
 
5c. In dynamical systems with a zero Lyapunov exponent, weak mixing can be governed 
by a specific topological structure of some surfaces that are invariant with respect to 
particle dynamics. In particular, when the genus of the invariant surfaces is more than 
one, they may have weak mixing and the corresponding fractional kinetics. This 
possibility is demonstrated by using a typical example from plasma physics, a three-
dimensional resistive pressure-gradient-driven turbulence model. In a toroidal geometry 
and with a low-pressure gradient, this model shows the emergence of quasicoherent 
structures. In this situation, the isosurfaces of the velocity stream function have a web 
structure with filamentary surfaces emerging from the outer region of the torus and 
covering the inner region. The filamentary surfaces can result in stochastic jets of 
particles that cause a "topological instability." In such a situation, particle transport along 
the surfaces is of the anomalous superdiffusion type]. 
 
5d. Advection properties of passive particles in flows generated by point vortices are 
considered. Transport properties are anomalous with characteristic transport exponent µ 
similar to 1.5. This behavior is linked back to the presence of coherent fractal structures 
within the flow. A fractional kinetic analysis allows to link the characteristic transport 
exponent it to the trapping time exponent γ = 1 + µ. The quantitative agreement is found 
for different systems of vortices investigated and a clear signature is obtained of the 
fractional nature of transport in these flows. 
 
5e. The goal of this part is to develop an approach convenient to study dynamics along 
the magnetic surfaces and in the stochastic layers for the cases when the Lyapunov 
exponent is very small and the transport is anomalous. New notions of the complexity 
function C(ε;t,s) and entropy function S(ε;t,s) are introduced to describe systems with 
nonzero or zero Lyapunov exponents or systems that exhibit strong intermittent behavior 



with "flights," trappings, weak mixing, etc. The important part of the new notions is the 
first appearance of ε-separation of initially close trajectories. The complexity function is 
similar to the propagator p(t(0),x(0);t,x) with a replacement of x by the natural lengths s 
of trajectories, and its introduction does not assume of the space-time independence in the 
process of evolution of the system. A special stress is done on the choice of variables and 
the replacement t→η=ln t, s→ξ=ln s makes it possible to consider time-algebraic and 
space-algebraic complexity and some mixed cases. It is shown that for typical cases the 
entropy function S(ε;ξ,η) possesses invariants (α,β) that describe the fractal dimensions of 
the space-time structures of trajectories. The invariants (α,β) can be linked to the 
transport properties of the system, from one side, and to the Riemann invariants for 
simple waves, from the other side. This analog provides a new meaning for the transport 
exponent mu that can be considered as the speed of a Riemann wave in the log-phase 
space of the log-space-time variables. Some other applications of new notions are 
considered and numerical examples are presented . 
 
5f. A family of the billiard-type systems with zero Lyapunov exponent is considered as 
an example of dynamics which is between the regular one and chaotic mixing. This type 
of dynamics is called ``pseudochaos''. We demonstrate how the fractional kinetic 
equation can be introduced for the pseudochaos and how the main critical exponents of 
the fractional kinetics can be evaluated from the dynamics. Problems related to 
pseudochaos are discussed: Poincaré recurrences, continued fractions, log-periodicity, 
rhombic billiards, and others. Pseudochaotic dynamics and fractional 
kinetics can be applied to streamlines or magnetic field lines behavior . 
 
5g. In Hamiltonian dynamics chaotic trajectories can be characterized by a non-zero 
Lyapunov exponent. In general case of random dynamics the Lyapunov exponent can be 
close to zero because of the stickiness, or simply zero, as in the case of pseudochaos. 
Kinetic description of such situations is based on scaling properties of the dynamics in 
both space and time and it reveals an equation with fractional derivatives in space and 
time. It is shown for different models that the ergodic theorem cannot be applied for the 
observed data, and that weak mixing leads to unusual macroscopic behavior with 
persistent fluctuations that do not decay in an exponential way as in the kinetics of the 
Gaussian type]. 
 
5h. We present two observations related to the application of linear (LFE) and nonlinear 
fractional equations (NFE). First, we give the comparison and estimates of the role of the 
fractional derivative term to the normal diffusion term in a LFE. The transition of the 
solution from normal to anomalous transport is demonstrated and the dominant role of 
the power tails in the long time asymptotics is shown. Second, wave propagation or 
kinetics in a nonlinear media with fractal properties is considered. A corresponding 
fractional generalization of the Ginzburg–Landau and nonlinear Schrödinger equations is 
proposed .  
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