28 research outputs found

    Synthesis and Characterization of Greener Ceramic Materials with Lower Thermal Conductivity Using Olive Mill Solid Byproduct

    Get PDF
    In the current research, the valorization of olive mill solid waste as beneficial admixture into clay bodies for developing greener ceramic materials with lower thermal conductivity, thus with increased thermal insulation capacity towards energy savings, is investigated. Various clay/waste mixtures were prepared. The raw material mixtures were characterized and subjected to thermal gravimetric analysis, in order to optimize the mineral composition and maintain calcium and magnesium oxides content to a minimum. Test specimens were formed employing extrusion and then sintering procedure at different peak temperatures. Apparent density, water absorption capability, mechanical strength, porosity and thermal conductivity were determined on sintered specimens and examined in relation to the waste percentage and sintering temperature. The experimental results showed that ceramic production from clay/olive-mill solid waste mixtures is feasible. In fact, the mechanical properties are not significantly impacted with the incorporation of the waste in the ceramic body. However, the thermal conductivity decreases significantly, which can be of particular interest for thermal insulating materials development. Furthermore, the shape of the produced ceramics does not appear to change with the sintering temperature increase

    The Sympathetic Nervous System in Heart Failure Physiology, Pathophysiology, and Clinical Implications

    Get PDF
    Heart failure is a syndrome characterized initially by left ventricular dysfunction that triggers countermeasures aimed to restore cardiac output. These responses are compensatory at first but eventually become part of the disease process itself leading to further worsening cardiac function. Among these responses is the activation of the sympathetic nervous system (SNS) that provides inotropic support to the failing heart increasing stroke volume, and peripheral vasoconstriction to maintain mean arterial perfusion pressure, but eventually accelerates disease progression affecting survival. Activation of SNS has been attributed to withdrawal of normal restraining influences and enhancement of excitatory inputs including changes in: 1) peripheral baroreceptor and chemoreceptor reflexes; 2) chemical mediators that control sympathetic outflow; and 3) central integratory sites. The interface between the sympathetic fibers and the cardiovascular system is formed by the adrenergic receptors (ARs). Dysregulation of cardiac beta1-AR signaling and transduction are key features of heart failure progression. In contrast, cardiac beta2-ARs and alpha1-ARs may function in a compensatory fashion to maintain cardiac inotropy. Adrenergic receptor polymorphisms may have an impact on the adaptive mechanisms, susceptibilities, and pharmacological responses of SNS. The beta-AR blockers and the inhibitors of the renin-angiotensin-aldosterone axis form the mainstay of current medical management of chronic heart failure. Conversely, central sympatholytics have proved harmful, whereas sympathomimetic inotropes are still used in selected patients with hemodynamic instability. This review summarizes the changes in SNS in heart failure and examines how modulation of SNS activity may affect morbidity and mortality from this syndrome

    SYNTHESIS AND CHARACTERIZATION OF GREENER CERAMIC MATERIALS WITH LOWER THERMAL CONDUCTIVITY USING OLIVE MILL SOLID BYPRODUCT

    Get PDF
    In the current research, the valorization of olive mill solid waste as beneficial admixture into clay bodies for developing greener ceramic materials with lower thermal conductivity, thus with increased thermal insulation capacity towards energy savings, is investigated. Various clay/waste mixtures were prepared. The raw material mixtures were characterized and subjected to thermal gravimetric analysis, in order to optimize the mineral composition and maintain calcium and magnesium oxides content to a minimum. Test specimens were formed employing extrusion and then sintering procedure at different peak temperatures. Apparent density, water absorption capability, mechanical strength, porosity and thermal conductivity were determined on sintered specimens and examined in relation to the waste percentage and sintering temperature. The experimental results showed that ceramic production from clay/olive-mill solid waste mixtures is feasible. In fact, the mechanical properties are not significantly impacted with the incorporation of the waste in the ceramic body. However, the thermal conductivity decreases significantly, which can be of particular interest for thermal insulating materials development. Furthermore, the shape of the produced ceramics does not appear to change with the sintering temperature increase

    Telemonitoring in Chronic Heart Failure: A Systematic Review

    Get PDF
    Heart failure (HF) is a growing epidemic with the annual number of hospitalizations constantly increasing over the last decades for HF as a primary or secondary diagnosis. Despite the emergence of novel therapeutic approached that can prolong life and shorten hospital stay, HF patients will be needing rehospitalization and will often have a poor prognosis. Telemonitoring is a novel diagnostic modality that has been suggested to be beneficial for HF patients. Telemonitoring is viewed as a means of recording physiological data, such as body weight, heart rate, arterial blood pressure, and electrocardiogram recordings, by portable devices and transmitting these data remotely (via a telephone line, a mobile phone or a computer) to a server where they can be stored, reviewed and analyzed by the research team. In this systematic review of all randomized clinical trials evaluating telemonitoring in chronic HF, we aim to assess whether telemonitoring provides any substantial benefit in this patient population

    Depression in Patients with Cardiovascular Disease

    Get PDF
    It has been widely suggested that depression negatively affects patients with cardiovascular disease. There are several pathophysiological mechanisms as well as behavioral processes linking depression and cardiac events. Improvements in nursing and medical care have prolonged survival of this patient population; however, this beneficial outcome has led to increased prevalence of depression. Since mortality rates in chronic heart failure patients remain extremely high, it might be as equally important to screen for depression and there are several valid and reliable screening tools that healthcare personnel could easily employ to identify patients at greater risk. Consultation should be provided by a multidisciplinary team, consisting of cardiologists, psychiatrists, and hospital or community nurses so as to carefully plan, execute, and evaluate medical intervention and implement lifestyle changes. We aim to systematically review the existing knowledge regarding current definitions, prognostic implications, pathophysiological mechanisms, and current and future treatment options in patients with depression and cardiovascular disease, specifically those with heart failure

    Isotopic Grand Unification with the Inclusion of Gravity (revised version)

    Get PDF
    We introduce a dual lifting of unified gauge theories, the first characterized by the isotopies, which are axiom- preserving maps into broader structures with positive-definite generalized units used for the representation of matter under the isotopies of the Poincare' symmetry, and the second characterized by the isodualities, which are anti-isomorphic maps with negative-definite generalized units used for the representation of antimatter under the isodualities of the Poincare' symmetry. We then submit, apparently for the first time, a novel grand unification with the inclusion of gravity for matter embedded in the generalized positive-definite units of unified gauge theories while gravity for antimatter is embedded in the isodual isounit. We then show that the proposed grand unification provides realistic possibilities for a resolution of the axiomatic incompatibilities between gravitation and electroweak interactions due to curvature, antimatter and the fundamental space-time symmetries.Comment: 20 pages, Latex, revised in various details and with added reference

    Cyclic response of RC beam-column joints strengthened with transverse steel bars and with C-FRP diagonal ties

    Get PDF
    The use of additional bars, internally placed through drill holes, in external beam-column connections subjected to cyclic loading, as shear reinforcement is experimentally investigated.The presented experimental work includes tests of full-scale specimens with different reinforcement arrangements in the joint area, they are as follows: (a) the JB0V control specimen with two (extra) vertical side bars without shear reinforcement in the joint area and, (b) the JB0R joint, same as in the case of the control specimen, without the extra vertical bars, but with four additional steel bars that were placed in holes, which were drilled through the concrete of the joint body for this purpose, (c) the JB0VFX joint, the damaged control specimen repaired and strengthened with C-FRP diagonal ties (rope connections) through the joint area. The effectiveness of these additional bars and ropes as a shear reinforcement on the overall seismic performance of the tested joint is examined.A comparison between the test results of the examined specimens indicated that the applied retrofitting technique is appropriate for the enhancement of the overall hysteretic performance of the beam-column joints in terms of load carrying capacity, stiffness and hysteretic energy dissipation
    corecore