55 research outputs found

    Tidal stream generators, current state and potential opportunities for condition monitoring

    Get PDF
    Tidal power industry has made significant progress towards commercialization over the past decade. Significant investments from sector leaders, strong technical progress and positive media coverage have established the credibility of this specific renewable energy source. However, its progress is being retarded by operation and maintenance problems, which results in very low operational availability times, as low as 25 %. This paper presents a literature review of the current state of tidal device operators as well as some commercial tidal turbine condition monitoring solutions. Furthermore, an overview is given of the global tidal activity status (tidal energy market size and geography), the key industry activity and the regulations-standards related with tidal energy industry. Therefore, the main goal of this paper is to provide a bird’s view of the current status of the tidal power industry to serve as a roadmap for the academia regarding the real needs of the tidal power industry

    Acoustic emission localization on ship hull structures using a deep learning approach

    Get PDF
    In this paper, deep belief networks were used for localization of acoustic emission events on ship hull structures. In order to avoid complex and time consuming implementations, the proposed approach uses a simple feature extraction module, which significantly reduces the extremely high dimensionality of the raw signals/data. In simulation experiments, where a stiffened plate model was partially sunk into the water, the localization rate of acoustic emission events in a noise-free environment is greater than 94 %, using only a single sensor

    The use of a Multi-label Classification Framework for the Detection of Broken Bars and Mixed Eccentricity Faults based on the Start-up Transient

    Full text link
    [EN] In this article a data driven approach for the classification of simultaneously occurring faults in an induction motor is presented. The problem is treated as a multi-label classification problem with each label corresponding to one specific fault. The faulty conditions examined, include the existence of a broken bar fault and the presence of mixed eccentricity with various degrees of static and dynamic eccentricity, while three "problem transformation" methods are tested and compared. For the feature extraction stage, the startup current is exploited using two well-known time-frequency (scale) transformations. This is the first time that a multi-label framework is used for the diagnosis of co-occurring fault conditions using information coming from the start-up current of induction motors. The efficiency of the proposed approach is validated using simulation data with promising results irrespective of the selected time-frequency transformation.This work was supported in part by the Spanish MINECO and FEDER program in the framework of the "Proyectos I + D del Subprograma de Generacion de Conocimiento, Programa Estatal de Fomento de la Investigacion Cientifica y Tecnica de Excelencia" under Grant DPI2014-52842-P and in part by the Horizon 2020 Framework program DISIRE under the Grant Agreement 636834.Georgoulas, G.; Climente Alarcón, V.; Antonino-Daviu, J.; Tsoumas, IP.; Stylios, CD.; Arkkio, A.; Nikolakopoulos, G. (2016). The use of a Multi-label Classification Framework for the Detection of Broken Bars and Mixed Eccentricity Faults based on the Start-up Transient. IEEE Transactions on Industrial Informatics. 13(2):625-634. https://doi.org/10.1109/TII.2016.2637169S62563413

    Deliverable D2.1 - Ecosystem analysis and 6G-SANDBOX facility design

    Get PDF
    This document provides a comprehensive overview of the core aspects of the 6G-SANDBOX project. It outlines the project's vision, objectives, and the Key Performance Indicators (KPIs) and Key Value Indicators (KVIs) targeted for achievement. The functional and non-functional requirements of the 6G-SANDBOX Facility are extensively presented, based on a proposed reference blueprint. A detailed description of the updated reference architecture of the facility is provided, considering the requirements outlined. The document explores the experimentation framework, including the lifecycle of experiments and the methodology for validating KPIs and KVIs. It presents the key technologies and use case enablers towards 6G that will be offered within the trial networks. Each of the platforms constituting the 6G-SANDBOX Facility is described, along with the necessary enhancements to align them with the project's vision in terms of hardware, software updates, and functional improvements

    Bearing fault detection and diagnosis by fusing vibration data

    No full text
    This article presents a simple method for the detection and diagnosis of bearing faults, by fusing the information coming from two accelerometers. The method relies on three simple and intuitive features, extracted from the data coming from accelerometers placed at two different sites of the system under investigation. Our preliminary results indicate that by using simple statistical measures, such as the elements of the covariance matrix of the two sensors, faults at an early stage can be detected. In our the proposed scheme, the extracted features are fed to a k-nearest neighbour classifier for diagnosis purposes or to an ensemble of one-class detectors, if only the information from normal situation is available. As it is proved, based on experimental results, in both scenarios a remarkably high detection/diagnostic performance is achieved.Integrated Process Control based on Distributed In-Situ Sensors into Raw Material and Energy Feedstock, DISIR

    Fault Diagnosis, Failure Prognosis and Fault Tolerant Control of Aerospace/Unmanned Aerial Systems

    No full text
    Fault-tolerant control and operation of complex unmanned and aircraft systems is an emerging technology intended to provide the designer and operator with flexibility, interoperability, sustainment and reliability under changing operational requirements or mission profiles. Moreover, it is intended to reconfigure online hardware and software to maintain the operational integrity of the system in the event of contingencies (fault/failure modes). This paper presents an hierarchical architecture that uses available sensor information, fault isolation, failure prognosis, system restructuring and controller reconfiguration. The fault tolerant control framework relies on prognostic information to reconfigure system components and preserve the operational integrity of the aircraft. The hierarchical structure starts at the lowest component level and migrates to the middle system/subsystem level ending with the final mission level. We illustrate the methodology using an electro-mechanical actuator (EMA).Godkänd; 2016; 20160531 (geonik)Integrated Process Control based on Distributed In-Situ Sensors into Raw Material and Energy Feedstock, DISIR

    Bearing fault classification based on minimum volume ellipsoid feature extraction

    No full text
    This article presents a novel fault classification and diagnosis technique for bearings based on a Minimum Volume Ellipsoid (MVE) method for feature extraction. Data from two accelerometers located at two different sights of the test bed are combined to create a two dimensional representation and the feature extraction stage condenses that information using an ellipsoid description. The proposed features feed a simple non-linear classifier which separates almost perfectly between normal and faulty conditions, with also very high diagnostic accuracy between the faulty classes. The obtained results suggest that this novel representation can be used within a condition monitoring system.Godkänd; 2013; 20130515 (geonik)Fault Detection in Bearing

    Principal Component Analysis Anomaly Detector for Rotor Broken Bars

    No full text
    In this article a method for the detection of broken rotor bars in asynchronous machines operating under full load is presented. Unlike most Motor Current Signature Analysis (MCSA) approaches, which operate in the frequency domain, our method operates in the time domain. The scheme is based on the use of a Principal Component Analysis (PCA) fault/anomaly detector applied on the three stator currents to calculate the Q statistic which is employed for detecting a fault. The efficiency of the proposed scheme was experimentally evaluated using different fault severity levels, ranging from 1/4 of a broken bar to three broken bars. The obtained results indicate that the method can detect the caused asymmetry with a very restricted amount of data.Godkänd; 2015; 20140623 (geonik
    corecore