93 research outputs found

    Bioturbation in a Declining Oxygen Environment, in situ Observations from Wormcam

    Get PDF
    Bioturbation, the displacement and mixing of sediment particles by fauna or flora, facilitates life supporting processes by increasing the quality of marine sediments. In the marine environment bioturbation is primarily mediated by infaunal organisms, which are susceptible to perturbations in their surrounding environment due to their sedentary life history traits. Of particular concern is hypoxia, dissolved oxygen (DO) concentrations ≤2.8 mg l−1, a prevalent and persistent problem that affects both pelagic and benthic fauna. A benthic observing system (Wormcam) consisting of a buoy, telemetering electronics, sediment profile camera, and water quality datasonde was developed and deployed in the Rappahannock River, VA, USA, in an area known to experience seasonal hypoxia from early spring to late fall. Wormcam transmitted a time series of in situ images and water quality data, to a website via wireless internet modem, for 5 months spanning normoxic and hypoxic periods. Hypoxia was found to significantly reduce bioturbation through reductions in burrow lengths, burrow production, and burrowing depth. Although infaunal activity was greatly reduced during hypoxic and near anoxic conditions, some individuals remained active. Low concentrations of DO in the water column limited bioturbation by infaunal burrowers and likely reduced redox cycling between aerobic and anaerobic states. This study emphasizes the importance of in situ observations for understanding how components of an ecosystem respond to hypoxia

    LSST Science Book, Version 2.0

    Get PDF
    A survey that can cover the sky in optical bands over wide fields to faint magnitudes with a fast cadence will enable many of the exciting science opportunities of the next decade. The Large Synoptic Survey Telescope (LSST) will have an effective aperture of 6.7 meters and an imaging camera with field of view of 9.6 deg^2, and will be devoted to a ten-year imaging survey over 20,000 deg^2 south of +15 deg. Each pointing will be imaged 2000 times with fifteen second exposures in six broad bands from 0.35 to 1.1 microns, to a total point-source depth of r~27.5. The LSST Science Book describes the basic parameters of the LSST hardware, software, and observing plans. The book discusses educational and outreach opportunities, then goes on to describe a broad range of science that LSST will revolutionize: mapping the inner and outer Solar System, stellar populations in the Milky Way and nearby galaxies, the structure of the Milky Way disk and halo and other objects in the Local Volume, transient and variable objects both at low and high redshift, and the properties of normal and active galaxies at low and high redshift. It then turns to far-field cosmological topics, exploring properties of supernovae to z~1, strong and weak lensing, the large-scale distribution of galaxies and baryon oscillations, and how these different probes may be combined to constrain cosmological models and the physics of dark energy.Comment: 596 pages. Also available at full resolution at http://www.lsst.org/lsst/sciboo
    • …
    corecore