38,045 research outputs found
Once-ionized helium in superstrong magnetic fields
It is generally believed that magnetic fields of some neutron stars, the
so-called magnetars, are enormously strong, up to 10^{14} - 10^{15} G. Recent
investigations have shown that the atmospheres of magnetars are possibly
composed of helium. We calculate the structure and bound-bound radiative
transitions of the He^+ ion in superstrong fields, including the effects caused
by the coupling of the ion's internal degrees of freedom to its center-of-mass
motion. We show that He^+ in superstrong magnetic fields can produce spectral
lines with energies of up to about 3 keV, and it may be responsible for
absorption features detected recently in the soft X-ray spectra of several
radio-quiet isolated neutron stars. Quantization of the ion's motion across a
magnetic field results in a fine structure of spectral lines, with a typical
spacing of tens electron-volts in magnetar-scale fields. It also gives rise to
ion cyclotron transitions, whose energies and oscillator strengths depend on
the state of the bound ion.Comment: 12 pages, including 3 figures. Submitted to ApJ Letters (revised
version
Is perpendicular magnetic anisotropy essential to all-optical ultrafast spin reversal in ferromagnets?
All-optical spin reversal presents a new opportunity for spin manipulations,
free of a magnetic field. Most of all-optical-spin-reversal ferromagnets are
found to have a perpendicular magnetic anisotropy (PMA), but it has been
unknown whether PMA is necessary for the spin reversal. Here we theoretically
investigate magnetic thin films with either PMA or in-plane magnetic anisotropy
(IMA). Our results show that the spin reversal in IMA systems is possible, but
only with a longer laser pulse and within a narrow laser parameter region. The
spin reversal does not show a strong helicity dependence where the left- and
right-circularly polarized light lead to the identical results. By contrast,
the spin reversal in PMA systems is robust, provided both the spin angular
momentum and laser field are strong enough while the magnetic anisotropy itself
is not too strong. This explains why experimentally the majority of all-optical
spin-reversal samples are found to have strong PMA and why spins in Fe
nanoparticles only cant out of plane. It is the laser-induced spin-orbit torque
that plays a key role in the spin reversal. Surprisingly, the same spin-orbit
torque results in laser-induced spin rectification in spin-mixed configuration,
a prediction that can be tested experimentally. Our results clearly point out
that PMA is essential to the spin reversal, though there is an opportunity for
in-plane spin reversal.Comment: 20 pages, 4 figures and one tabl
The effects of simulated space environmental parameters on six commercially available composite materials
The effects of simulated space environmental parameters on microdamage induced by the environment in a series of commercially available graphite-fiber-reinforced composite materials were determined. Composites with both thermoset and thermoplastic resin systems were studied. Low-Earth-Orbit (LEO) exposures were simulated by thermal cycling; geosynchronous-orbit (GEO) exposures were simulated by electron irradiation plus thermal cycling. The thermal cycling temperature range was -250 F to either 200 F or 150 F. The upper limits of the thermal cycles were different to ensure that an individual composite material was not cycled above its glass transition temperature. Material response was characterized through assessment of the induced microcracking and its influence on mechanical property changes at both room temperature and -250 F. Microdamage was induced in both thermoset and thermoplastic advanced composite materials exposed to the simulated LEO environment. However, a 350 F cure single-phase toughened epoxy composite was not damaged during exposure to the LEO environment. The simuated GEO environment produced microdamage in all materials tested
Medical Malpractice Litigation Under National Health Insurance: Essential or Expendable?
Identification of time-continuous models from sampled data is a long standing topic of discussion, and many approaches have been suggested. The Maximum Likelihood method is asymptotically and theoretically superior to other methods. However, it may suffer from numerical inaccuracies at fast sampling and it also requires reliable initial parameter values. A number of efficient and useful alternatives to the maximum-likelihood method have been developed over the years. The most important of these are State-Variable filters, combined with Instrumental Variable methods, including the simplified refined IV method. In this contribution we perform unpretentious numerical experiments to comment on these methods, and their mutual benefits.CADIC
Optimal Generation of Pulsed Entangled Photon Pairs
We experimentally investigate a double-pass parametric down-conversion scheme
for producing pulsed, polarization-entangled photon pairs with high visibility.
The amplitudes for creating photon pairs on each pass interfere to compensate
for distinguishing characteristics that normally degrade two-photon visibility.
The result is a high-flux source of polarization-entangled photon pulses that
does not require spectral filtering. We observe quantum interference visibility
of over 95% without the use of spectral filters for 200 femtosecond pulses, and
up to 98.1% with 5 nm bandwidth filters.Comment: 8 pages, 6 figure
Switching ferromagnetic spins by an ultrafast laser pulse: Emergence of giant optical spin-orbit torque
Faster magnetic recording technology is indispensable to massive data storage
and big data sciences. {All-optical spin switching offers a possible solution},
but at present it is limited to a handful of expensive and complex rare-earth
ferrimagnets. The spin switching in more abundant ferromagnets may
significantly expand the scope of all-optical spin switching. Here by studying
40,000 ferromagnetic spins, we show that it is the optical spin-orbit torque
that determines the course of spin switching in both ferromagnets and
ferrimagnets. Spin switching occurs only if the effective spin angular momentum
of each constituent in an alloy exceeds a critical value. Because of the strong
exchange coupling, the spin switches much faster in ferromagnets than
weakly-coupled ferrimagnets. This establishes a paradigm for all-optical spin
switching. The resultant magnetic field (65 T) is so big that it will
significantly reduce high current in spintronics, thus representing the
beginning of photospintronics.Comment: 12 page2, 6 figures. Accepted to Europhysics Letters (2016). Extended
version with the supplementary information. Contribution from Indiana State
University,Europhysics Letters (2016
Production of non-Abelian tensor gauge bosons. Tree amplitudes in generalized Yang-Mills theory and BCFW recursion relation
The BCFW recursion relation allows to calculate tree-level scattering
amplitudes in generalized Yang-Mills theory and, in particular, four-particle
amplitudes for the production rate of non-Abelian tensor gauge bosons of
arbitrary high spin in the fusion of two gluons. The consistency of the
calculations in different kinematical channels is fulfilled when all
dimensionless cubic coupling constants between vector bosons (gluons) and high
spin non-Abelian tensor gauge bosons are equal to the Yang-Mills coupling
constant. There are no high derivative cubic vertices in the generalized
Yang-Mills theory. The amplitudes vanish as complex deformation parameter tends
to infinity, so that there is no contribution from the contour at infinity. We
derive a generalization of the Parke-Taylor formula in the case of production
of two tensor gauge bosons of spin-s and N gluons (jets). The expression is
holomorhic in the spinor variables of the scattered particles, exactly as the
MHV gluon amplitude is, and reduces to the gluonic MHV amplitude when s=1. In
generalized Yang-Mills theory the tree level n-particle scattering amplitudes
with all positive helicities vanish, but tree amplitudes with one negative
helicity particle are already nonzero.Comment: 19 pages, LaTex fil
- …