63 research outputs found

    In vitro production of bovine embryos derived from individual donors in the Corral® dish

    Get PDF
    Background: Since the identity of the embryo is of outmost importance during commercial in vitro embryo production, bovine oocytes and embryos have to be cultured strictly per donor. Due to the rather low yield of oocytes collected after ovum pick-up (OPU) per individual cow, oocyte maturation and embryo culture take place in small groups, which is often associated with inferior embryo development. The objective of this study was to improve embryonic development in small donor groups by using the Corral (R) dish. This commercial dish is designed for human embryo production. It contains two central wells that are divided into quadrants by a semi-permeable wall. In human embryo culture, one embryo is placed per quadrant, allowing individual follow-up while embryos are exposed to a common medium. In our study, small groups of oocytes and subsequently embryos of different bovine donors were placed in the Corral (R) dish, each donor group in a separate quadrant. Results: In two experiments, the Corral (R) dish was evaluated during in vitro maturation (IVM) and/or in vitro culture (IVC) by grouping oocytes and embryos of individual bovine donors per quadrant. At day 7, a significantly higher blastocyst rate was noted in the Corral (R) dish used during IVM and IVC than when only used during IVM (12.9% +/- 2.10 versus 22.8% +/- 2.67) (P < 0.05). However, no significant differences in blastocyst yield were observed anymore between treatment groups at day 8 post insemination. Conclusions: In the present study, the Corral (R) dish was used for in vitro embryo production (IVP) in cattle; allowing to allocate oocytes and/or embryos per donor. As fresh embryo transfers on day 7 have higher pregnancy outcomes, the Corral (R) dish offers an added value for commercial OPU/IVP, since a higher blastocyst development at day 7 is obtained when the Corral (R) dish is used during IVM and IVC

    Abnormal social reward processing in autism as indexed by pupillary responses to happy faces

    Get PDF
    Background: Individuals with Autism Spectrum Disorders (ASD) typically show impaired eye contact during social interactions. From a young age, they look less at faces than typically developing (TD) children and tend to avoid direct gaze. However, the reason for this behavior remains controversial; ASD children might avoid eye contact because they perceive the eyes as aversive or because they do not find social engagement through mutual gaze rewarding. Methods: We monitored pupillary diameter as a measure of autonomic response in children with ASD (n = 20, mean age = 12.4) and TD controls (n = 18, mean age = 13.7) while they looked at faces displaying different emotions. Each face displayed happy, fearful, angry or neutral emotions with the gaze either directed to or averted from the subjects. Results: Overall, children with ASD and TD controls showed similar pupillary responses; however, they differed significantly in their sensitivity to gaze direction for happy faces. Specifically, pupillary diameter increased among TD children when viewing happy faces with direct gaze as compared to those with averted gaze, whereas children with ASD did not show such sensitivity to gaze direction. We found no group differences in fixation that could explain the differential pupillary responses. There was no effect of gaze direction on pupil diameter for negative affect or neutral faces among either the TD or ASD group. Conclusions: We interpret the increased pupillary diameter to happy faces with direct gaze in TD children to reflect the intrinsic reward value of a smiling face looking directly at an individual. The lack of this effect in children with ASD is consistent with the hypothesis that individuals with ASD may have reduced sensitivity to the reward value of social stimuli

    Characterisation of the pro-inflammatory cytokine signature in severe COVID-19

    Get PDF
    Clinical outcomes from infection with SARS-CoV-2, the cause of the COVID-19 pandemic, are remarkably variable ranging from asymptomatic infection to severe pneumonia and death. One of the key drivers of this variability is differing trajectories in the immune response to SARS-CoV-2 infection. Many studies have noted markedly elevated cytokine levels in severe COVID-19, although results vary by cohort, cytokine studied and sensitivity of assay used. We assessed the immune response in acute COVID-19 by measuring 20 inflammatory markers in 118 unvaccinated patients with acute COVID-19 (median age: 70, IQR: 58-79 years; 48.3% female) recruited during the first year of the pandemic and 44 SARS-CoV-2 naïve healthy controls. Acute COVID-19 was associated with marked elevations in nearly all pro-inflammatory markers, whilst eleven markers (namely IL-1β, IL-2, IL-6, IL-10, IL-18, IL-23, IL-33, TNF-α, IP-10, G-CSF and YKL-40) were associated with disease severity. We observed significant correlations between nearly all markers elevated in those infected with SARS-CoV-2 consistent with widespread immune dysregulation. Principal component analysis highlighted a pro-inflammatory cytokine signature (with strongest contributions from IL-1β, IL-2, IL-6, IL-10, IL-33, G-CSF, TNF-α and IP-10) which was independently associated with severe COVID-19 (aOR: 1.40, 1.11-1.76, p=0.005), invasive mechanical ventilation (aOR: 1.61, 1.19-2.20, p=0.001) and mortality (aOR 1.57, 1.06-2.32, p = 0.02). Our findings demonstrate elevated cytokines and widespread immune dysregulation in severe COVID-19, adding further evidence for the role of a pro-inflammatory cytokine signature in severe and critical COVID-19

    Book Review of Iminosugars: From Synthesis to Therapeutic Applications.

    No full text

    Cryptocaryols A and B: Total Syntheses, Stereochemical Revision, Structure Elucidation, and Structure–Activity Relationship

    No full text
    The first total syntheses and structural elucidation of cryptocaryol A and cryptocaryol B were achieved in 23 and 25 linear steps, respectively. The synthesis relied on the use of a key pseudo-<i>C</i><sub><i>s</i></sub> symmetric pentaol intermediate, which in a stereochemically divergent manner was converted into either enantiomer as well as diastereomers. This synthetic effort enabled the first structure–activity relationships of this class of PDCD4 stabilizing natural products
    • …
    corecore