16,345 research outputs found

    Damage to metallic samples produced by measured lightning currents

    Get PDF
    A total of 10 sample disks of 2024-T3 aluminum and 4130 ferrous steel were exposed to rocket-triggered lightning currents at the Kennedy Space Center test site. The experimental configuration was arranged so that the samples were not exposed to the preliminary streamer, wire-burn, or following currents that are associated with an upward-initiated rocket-triggered flash but which are atypical of naturally initiated lightning. Return-stroke currents and continuing currents actually attaching to the sample were measured, augmented by close-up video recordings of approximately 3 feet of the channel above the sample and by 16-mm movies with 5-ms resolution. From these data it was possible to correlate individual damage spots with streamer, return-stroke, and continuing currents that produced them. Substantial penetration of 80-mil aluminum was produced by a continuing current of submedian amplitude and duration, and full penetration of a 35-mil steel sample occurred under an eightieth percentile continuing current. The primary purpose of the data acquired in these experiments is for use in improving and quantifying the fidelity of laboratory simulations of lightning burnthrough

    The Sandia transportable triggered lightning instrumentation facility

    Get PDF
    Development of the Sandia Transportable Triggered Lightning Instrumentation Facility (SATTLIF) was motivated by a requirement for the in situ testing of a munitions storage bunker. Transfer functions relating the incident flash currents to voltages, currents, and electromagnetic field values throughout the structure will be obtained for use in refining and validating a lightning response computer model of this type of structure. A preliminary shakedown trial of the facility under actual operational conditions was performed during summer of 1990 at the Kennedy Space Center's (KSC) rocket-triggered lightning test site. A description is given of the SATTLIF, which is readily transportable on a single flatbed truck of by aircraft, and its instrumentation for measuring incident lightning channel currents and the responses of the systems under test. Measurements of return-stroke current peaks obtained with the SATTLIF are presented. Agreement with data acquired on the same flashes with existing KSC instrumentation is, on average, to within approximately 7 percent. Continuing currents were measured with a resolution of approximately 2.5 A. This field trial demonstrated the practicality of using a transportable triggered lightning facility for specialized test applications

    Static internal performance of ventral and rear nozzle concepts for short-takeoff and vertical-landing aircraft

    Get PDF
    The internal performance of two exhaust system concepts applicable to single-engine short-take-off and vertical-landing tactical fighter configurations was investigated. These concepts involved blocking (or partially blocking) tailpipe flow to the rear (cruise) nozzle and diverting it through an opening to a ventral nozzle exit for vertical thrust. A set of variable angle vanes at the ventral nozzle exit were used to vary ventral nozzle thrust angle between 45 and 110 deg relative to the positive axial force direction. In the vertical flight mode the rear nozzle (or tailpipe flow to it) was completely blocked. In the transition flight mode flow in the tailpipe was split between the rear and ventral nozzles and the flow was vectored at both exits for aircraft control purposes through this flight regime. In the cruise flight mode the ventral nozzle was sealed and all flow exited through the rear nozzle

    Impact of Income on Calorie and Nutrient Intakes: A Cross-Country Analysis

    Get PDF
    The relationship between income and nutrient intake is explored. Nonparametric, panel, and quantile regressions are used. Engle curves for calories, fat, and protein are approximately linear in logs with carbohydrate intakes exhibiting diminishing elasticities as incomes increase. Elasticities range from 0.10 to 0.25, with fat having the highest elasticities. Countries in higher quantiles have lower elasticities than those in lower quantiles. Results predict significant cumulative increases in calorie consumption which are increasingly composed of fats. Though policies aimed at poverty alleviation and economic growth may assuage hunger and malnutrition, they may also exacerbate problems associated with obesity.calorie and nutrient consumption, food and nutrition policy, income elasticities, nonparametric, panel, quantile regression., Agricultural and Food Policy, Food Consumption/Nutrition/Food Safety, Food Security and Poverty, International Development, Research Methods/ Statistical Methods, C11, C14, C21, C23, O10, O47, Q18,

    Time-Dependent Fluid-Structure Interaction

    Full text link
    The problem of determining the manner in which an incoming acoustic wave is scattered by an elastic body immersed in a fluid is one of central importance in detecting and identifying submerged objects. The problem is generally referred to as a fluid-structure interaction and is mathematically formulated as a time-dependent transmission problem. In this paper, we consider a typical fluid-structure interaction problem by using a coupling procedure which reduces the problem to a nonlocal initial-boundary problem in the elastic body with a system of integral equations on the interface between the domains occupied by the elastic body and the fluid. We analyze this nonlocal problem by the Lubich approach via the Laplace transform, an essential feature of which is that it works directly on data in the time domain rather than in the transformed domain. Our results may serve as a mathematical foundation for treating time-dependent fluid-structure interaction problems by convolution quadrature coupling of FEM and BEM

    Formulation of the nonlinear analysis of shell-like structures, subjected to time-dependent mechanical and thermal loading

    Get PDF
    The object of the research reported herein was to develop a general mathematical model and solution methodologies for analyzing the structural response of thin, metallic shell structures under large transient, cyclic, or static thermomechanical loads. Among the system responses associated with these loads and conditions are thermal buckling, creep buckling, and ratcheting. Thus geometric and material nonlinearities (of high order) can be anticipated and must be considered in developing the mathematical model. The methodology is demonstrated through different problems of extension, shear, and of planar curved beams. Moreover, importance of the inclusion of large strain is clearly demonstrated, through the chosen applications
    • …
    corecore