25 research outputs found

    Stroke genetics informs drug discovery and risk prediction across ancestries

    Get PDF
    Previous genome-wide association studies (GWASs) of stroke — the second leading cause of death worldwide — were conducted predominantly in populations of European ancestry1,2. Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30% non-European) and 1,013,843 control individuals, 87% of the primary stroke risk loci and 60% of the secondary stroke risk loci were replicated (P < 0.05). Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in silico mutagenesis analysis3, and transcriptome-wide and proteome-wide association analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants (such as at GRK5 and NOS3). Using a three-pronged approach4, we provide genetic evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as possible targets, with drugs already under investigation for stroke for F11 and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly predicted ischaemic stroke in populations of European, East Asian and African ancestry5. Stroke genetic risk scores were predictive of ischaemic stroke independent of clinical risk factors in 52,600 clinical-trial participants with cardiometabolic disease. Our results provide insights to inform biology, reveal potential drug targets and derive genetic risk prediction tools across ancestries

    A candidate gene identification strategy utilizing mouse to human big-data mining: “3R-tenet” in COPD genetic research

    No full text
    Abstract Background Early life impairments leading to lower lung function by adulthood are considered as risk factors for chronic obstructive pulmonary disease (COPD). Recently, we compared the lung transcriptomic profile between two mouse strains with extreme total lung capacities to identify plausible pulmonary function determining genes using microarray analysis (GSE80078). Advancement of high-throughput techniques like deep sequencing (eg. RNA-seq) and microarray have resulted in an explosion of genomic data in the online public repositories which however remains under-exploited. Strategic curation of publicly available genomic data with a mouse-human translational approach can effectively implement “3R- Tenet” by reducing screening experiments with animals and performing mechanistic studies using physiologically relevant in vitro model systems. Therefore, we sought to analyze the association of functional variations within human orthologs of mouse lung function candidate genes in a publicly available COPD lung RNA-seq data-set. Methods Association of missense single nucleotide polymorphisms, insertions, deletions, and splice junction variants were analyzed for susceptibility to COPD using RNA-seq data of a Korean population (GSE57148). Expression of the associated genes were studied using the Gene Paint (mouse embryo) and Human Protein Atlas (normal adult human lung) databases. The genes were also assessed for replication of the associations and expression in COPD−/mouse cigarette smoke exposed lung tissues using other datasets. Results Significant association (p <  0.05) of variations in 20 genes to higher COPD susceptibility have been detected within the investigated cohort. Association of HJURP, MCRS1 and TLR8 are novel in relation to COPD. The associated ADAM19 and KIT loci have been reported earlier. The remaining 15 genes have also been previously associated to COPD. Differential transcript expression levels of the associated genes in COPD- and/ or mouse emphysematous lung tissues have been detected. Conclusion Our findings suggest strategic mouse-human datamining approaches can identify novel COPD candidate genes using existing datasets in the online repositories. The candidates can be further evaluated for mechanistic role through in vitro studies using appropriate primary cells/cell lines. Functional studies can be limited to transgenic animal models of only well supported candidate genes. This approach will lead to a significant reduction of animal experimentation in respiratory research

    LPS-induced apoptosis is partially mediated by hydrogen sulphide in RAW 264.7 murine macrophages

    No full text
    Abstract Lipopolysaccharide (LPS) induces apoptosis in murine macrophages through the autocrine secretion of tumor necrosis factor (TNF)-α and nitric oxide (NO). LPS-induced inflammation in murine macrophages is associated with hydrogen sulfide (H2S) production. In this present study, we reported the novel role of H2S in LPS-induced apoptosis and its underlying molecular mechanism specifically at late phases in murine macrophage cells. Stimulation of RAW 264.7 macrophages with LPS resulted in a time- and dose-dependent induction of apoptosis. We observed that the LPS-induced early apoptosis (associated with TNF-α secretion) in macrophages was not inhibited in the presence of H2S inhibitor (DL-propargylglycine), whereas early apoptosis was absent in the presence of TNF receptor antibody. Interestingly, LPS-induced late apoptosis paralleled with H2S production was reduced in the presence of H2S inhibitor but not with TNF receptor antibody. The late apoptotic events mediated by H2S and not the TNF-α induced early apoptosis correlated significantly with the induction of p53 and Bax expression in LPS-induced macrophages. Thus, it is possible that RAW 264.7 murine macrophages treated with LPS mediated early apoptosis through TNF-α and the late apoptotic events through the production of H2S

    Additional file 1: of A candidate gene identification strategy utilizing mouse to human big-data mining: “3R-tenet” in COPD genetic research

    No full text
    Table S1. List of the genes screened for association to higher Chronic Obstructive Pulmonary Disease (COPD) susceptibility. Table S2. Summary of the transcript (Gene Paint; mouse embryo) and protein (Human Protein Atlas) expression domains of the significantly associated chronic obstructive pulmonary disease (COPD) genes. Table S3. Analysis of lung transcript expression of the associated 20 genes in chronic obstructive pulmonary disease (COPD) and/ or emphysematous lung tissues using available datasets [GSE: 29133, 22,148, 1650, 47,460 and 54,837] in Genome Expression Omnibus (GEO) database. ↓: Decreased ↑: Increased ✓: significantly altered. Table S4. Analysis of l transcript expression of the associated 20 genes in mouse cigarette smoke exposed lungs using available datasets [GSE: 8790, 7310, 17,737, and 6205] in Genome Expression Omnibus (GEO) database. ↓: Decreased ↑: Increased ✓: significantly altered. Table S5. The difference in minor allele frequencies of the associated single nucleotide polymorphisms (SNPs) between Korean population and global population indicates the influence of ethnicity on the findings. The Korean population data was accessed from the KoreanDB: http://152.99.75.168/KRGDB/menuPages/firstInfo.jsp and http://152.99.75.168/KRGDB/browser/mainBrowser.jsp Global SNP data(dbSNP database): https://www.ncbi.nlm.nih.gov/SNP/ . Figure S1. Analysis of protein domain and functional sites in the “A Disintegrin and metallopeptidase domain 19” (ADAM19). Figure S2. Transcript (Gene Paint; mouse embryo) and protein expression (Human Protein atlas; normal lung) domain of holliday junction recognition protein (HJURP). Figure S3. Transcript (Gene Paint; mouse embryo) and protein expression (Human Protein atlas; normal lung) domain of microspherule protein 1 (MCRS1). Figure S4. Protein expression (Human Protein atlas; normal lung) domain of toll like receptor 8 (TLR8). Figure S5. Gene-set enrichment analysis for the associated 20 genes for (A) cellular component enrichment (B) biological process enrichment (C) molecular function enrichment (D) diseases enrichment using Enrichr interactive enrichment analysis tool [71]. (PDF 1296 kb

    Deciphering the potential efficacy of acetyl-L-carnitine (ALCAR) in maintaining connexin-mediated lenticular homeostasis

    No full text
    Purpose: To determine the putative role of acetyl-L-carnitine (ALCAR) in maintaining normal intercellular communication in the lens through connexin. Methods: In the present study, Wistar rat pups were divided into 3 groups of eight each. On postpartum day ten, Group I rat pups received an intraperitoneal injection (50 µl) of 0.89% saline. Rats in Groups II and III received a subcutaneous injection (50 µl) of sodium selenite (19 µmol/kg bodyweight); Group III rat pups also received an intraperitoneal injection of ALCAR (200 mg/kg bodyweight) once daily on postpartum days 9-14. Both eyes of each pup were examined from day 16 up to postpartum day 30. Alterations in the mean activity of the channel pumps, calcium-ATPase and sodium/ potassium-ATPase, were determined. The expression of genes encoding key lenticular gap junctions (connexin 46 and connexin 50) and a channel pump (plasma membrane Ca 2+ -ATPase [PMCA1]) was evaluated by reverse transcription-PCR. Immunoblot analysis was also performed to confirm the differential expression of key lenticular connexin proteins. In addition, bioinformatics analysis was performed to determine the interacting residues of the connexin proteins with ALCAR. Results: Significantly lower mean activities of Ca 2+ -ATPase and Na + /K + -ATPase were observed in the lenses of Group II rats than those in Group I rat lenses. However, the observed mean activities of Ca 2+ -ATPase and Na + /K + -ATPase in Group III rat lenses were significantly higher than those in Group II rat lenses. The mean mRNA transcript levels of the connexin 46 and connexin 50 genes were significantly lower, while the mean levels of PMCA1 gene transcripts were significantly higher, in Group II rat lenses than in Group I rat lenses. Immunoblot analysis also confirmed the altered expression of connexin proteins in lysates of whole lenses of Group II rats. However, the expression of connexin 46 and connexin 50 proteins in lenses from group III rats was essentially similar to that noted in lenses from normal (Group I) rats. Hydrogen bond-interaction between ALCAR and amino acid residues at the functional domain regions of connexin 46 and connexin 50 proteins was also demonstrated through bioinformatics tools. Conclusions: The results suggest that ALCAR plays a key role in maintaining lenticular homeostasis by promoting gap junctional intercellular communication
    corecore