6,808 research outputs found
Extreme ultraviolet mask surface cleaning effects on lithography process performance
Extreme UV (EUV) masks are expected to undergo cleaning processes in order to maintain the lifetimes necessary for high volume manufacturing. For this study, the impact of repetitive cleaning of EUV masks on imaging performance is evaluated. Two high quality industry standard EUV masks are used, with one of the masks undergoing repeated cleaning and the other one kept as a reference. Lithographic performance, in terms of process window analysis and line edge roughness, was monitored after every two cleans and was compared to the reference mask performance. Surface analysis by atomic force microscopy did not show changes in the midspatial frequency roughness measured after each clean. After a total of eight cleans, minimal degradation is observed in the lithographic performance of the mask. From these observations, the authors conclude that the cleaning cycles completed thus far did not damage the mask multilayer or the absorber structures. The cleaning cycles will be continued until significant loss in imaging fidelity is found. © 2010 American Vacuum Society
Is the Grass Always Greener on the Other Side? An Analysis of Migration and Retention of Ohio’s Working Age Population
Analyzing the relationship between average salary of individuals and retention rates of individuals in Ohio, this paper seeks to understand the talent migration trends among those with varying levels of education. A stark contrast is observed between the mobility of people with higher wages than those with lower wages, with a significantly higher percentage of the former leaving the state. The hypothesis suggests that earning higher wages outside of Ohio may reduce the likelihood of Ohio residents staying within the state. The research utilizes a probit regression model to estimate retention probabilities, controlling for age, whether the individual is employed, whether or not the individual was originally from the state, and whether the individual obtained a bachelor’s degree. Preliminary data from the CPS, serves as the foundation for analysis. Anticipated findings suggest that higher salaries of individuals correlate with lower retention rates. The study holds substantial implications for policymakers, educators, and employers, allowing for benchmarking against states with higher rates of retention and providing insight for learning about the policies and practices of these other states, which can help Ohio policymakers implement an effective plan for increasing their own retention rate
Evolution of acceptor stem tRNA recognition by class II prolyl-tRNA synthetase
Aminoacyl-tRNA synthetases (AARS) are an essential family of enzymes that catalyze the attachment of amino acids to specific tRNAs during translation. Previously, we showed that base-specific recognition of the tRNAPro acceptor stem is critical for recognition by Escherichia coli prolyl-tRNA synthetase (ProRS), but not for human ProRS. To further delineate species-specific differences in acceptor stem recognition, atomic group mutagenesis was used to probe the role of sugar–phosphate backbone interactions in recognition of human tRNAPro. Incorporation of site-specific 2′-deoxynucleotides, as well as phosphorothioate and methylphosphonate modifications within the tRNA acceptor stem revealed an extensive network of interactions with specific functional groups proximal to the first base pair and the discriminator base. Backbone functional groups located at the base of the acceptor stem, especially the 2′-hydroxyl of A66, are also critical for aminoacylation catalytic efficiency by human ProRS. Therefore, in contrast to the bacterial system, backbone-specific interactions contribute significantly more to tRNA recognition by the human enzyme than base-specific interactions. Taken together with previous studies, these data show that ProRS-tRNA acceptor stem interactions have co-adapted through evolution from a mechanism involving ‘direct readout’ of nucleotide bases to one relying primarily on backbone-specific ‘indirect readout’
Direct and indirect lactate oxidation in trained and untrained men.
Lactate has been shown to be an important oxidative fuel. We aimed to quantify the total lactate oxidation rate (Rox) and its direct vs. indirect (glucose that is gluconeogenically derived from lactate and subsequently oxidized) components (mg·kg(-1)·min(-1)) during rest and exercise in humans. We also investigated the effects of endurance training, exercise intensity, and blood lactate concentration ([lactate]b) on direct and indirect lactate oxidation. Six untrained (UT) and six trained (T) men completed 60 min of constant load exercise at power outputs corresponding to their lactate threshold (LT). T subjects completed two additional 60-min sessions of constant load exercise at 10% below the LT workload (LT-10%), one of which included a lactate clamp (LC; LT-10%+LC). Rox was higher at LT in T [22.7 ± 2.9, 75% peak oxygen consumption (Vo2peak)] compared with UT (13.4 ± 2.5, 68% Vo2peak, P < 0.05). Increasing [lactate]b (LT-10%+LC, 67% Vo2peak) significantly increased lactate Rox (27.9 ± 3.0) compared with its corresponding LT-10% control (15.9 ± 2.2, P < 0.05). Direct and indirect Rox increased significantly from rest to exercise, and their relative partitioning remained constant in all trials but differed between T and UT: direct oxidation comprised 75% of total lactate oxidation in UT and 90% in T, suggesting the presence of training-induced adaptations. Partitioning of total carbohydrate (CHO) use showed that subjects derived one-third of CHO energy from blood lactate, and exogenous lactate infusion increased lactate oxidation significantly, causing a glycogen-sparing effect in exercising muscle
Path deviations outperform approximate stability in heterogeneous congestion games
We consider non-atomic network congestion games with heterogeneous players
where the latencies of the paths are subject to some bounded deviations. This
model encompasses several well-studied extensions of the classical Wardrop
model which incorporate, for example, risk-aversion, altruism or travel time
delays. Our main goal is to analyze the worst-case deterioration in social cost
of a perturbed Nash flow (i.e., for the perturbed latencies) with respect to an
original Nash flow. We show that for homogeneous players perturbed Nash flows
coincide with approximate Nash flows and derive tight bounds on their
inefficiency. In contrast, we show that for heterogeneous populations this
equivalence does not hold. We derive tight bounds on the inefficiency of both
perturbed and approximate Nash flows for arbitrary player sensitivity
distributions. Intuitively, our results suggest that the negative impact of
path deviations (e.g., caused by risk-averse behavior or latency perturbations)
is less severe than approximate stability (e.g., caused by limited
responsiveness or bounded rationality). We also obtain a tight bound on the
inefficiency of perturbed Nash flows for matroid congestion games and
homogeneous populations if the path deviations can be decomposed into edge
deviations. In particular, this provides a tight bound on the Price of
Risk-Aversion for matroid congestion games
Stable homotopy, 1-dimensional NCCW complexes, and Property (H)
In this paper, we show that the homomorphisms between two unital
one-dimensional NCCW complexes with the same KK-class are stably homotopic,
i.e., with adding on a common homomorphism (with finite dimensional image),
they are homotopic. As a consequence, any one-dimensional NCCW complex has the
Property (H).Comment: Add motivation and backgroun
Complications in children with ventricular assist devices: systematic review and meta-analyses
Heart failure is a significant cause of mortality in children with cardiovascular diseases. Treatment of heart failure depends on patients’ symptoms, age, and severity of their condition, with heart transplantation required when other treatments are unsuccessful. However, due to lack of fitting donor organs, many patients are left untreated, or their transplant is delayed. In these patients, ventricular assist devices (VADs) are used to bridge to heart transplant. However, VAD support presents various complications in patients. The aim of this study was to compile, review, and analyse the studies reporting risk factors and aetiologies of complications of VAD support in children. Random effect risk ratios (RR) with 95% confidence intervals were calculated to analyse relative risk of thrombosis (RR = 3.53 [1.04, 12.06] I2 = 0% P = 0.04), neurological problems (RR = 0.95 [0.29, 3.15] I2 = 53% P = 0.93), infection (RR = 0.31 [0.05, 2.03] I2 = 86% P = 0.22), bleeding (RR = 2.57 [0.76, 8.66] I2 = 0% P = 0.13), and mortality (RR = 2.20 [1.36, 3.55] I2 = 0% P = 0.001) under pulsatile-flow and continuous-flow VAD support, relative risk of mortality (RR = 0.45 [0.15, 1.37] I2 = 36% P = 0.16) under left VAD and biVAD support, relative risk of thrombosis (RR = 1.72 [0.46, 6.44] I2 = 0% P = 0.42), infection (RR = 1.77 [0.10, 32.24] I2 = 46% P = 0.70) and mortality (RR = 0.92 [0.14, 6.28] I2 = 45% P = 0.93) in children with body surface area  1.2 m2 under VAD support, relative risk of mortality in children supported with VAD and diagnosed with cardiomyopathy and congenital heart diseases (RR = 1.31 [0.10, 16.61] I2 = 73% P = 0.84), and cardiomyopathy and myocarditis (RR = 0.91 [0.13, 6.24] I2 = 58% P = 0.92). Meta-analyses results show that further research is necessary to reduce complications under VAD support
- …