12 research outputs found

    Outlier SNPs detect weak regional structure against a background of genetic homogeneity in the Eastern Rock Lobster, Sagmariasus verreauxi

    Get PDF
    Genetic differentiation is characteristically weak in marine species making assessments of population connectivity and structure difficult. However, the advent of genomic methods has increased genetic resolution, enabling studies to detect weak, but significant population differentiation within marine species. With an increasing number of studies employing high resolution genome-wide techniques, we are realising that the connectivity of marine populations is often complex and quantifying this complexity can provide an understanding of the processes shaping marine species genetic structure and to inform long-term, sustainable management strategies. This study aims to assess the genetic structure, connectivity, and local adaptation of the Eastern Rock Lobster (Sagmariasus verreauxi), which has a maximum pelagic larval duration of 12 months and inhabits both subtropical and temperate environments. We used 645 neutral and 15 outlier SNPs to genotype lobsters collected from the only two known breeding populations and a third episodic population—encompassing S. verreauxi's known range. Through examination of the neutral SNP panel, we detected genetic homogeneity across the three regions, which extended across the Tasman Sea encompassing both Australian and New Zealand populations. We discuss differences in neutral genetic signature of S. verreauxi and a closely related, co-distributed rock lobster, Jasus edwardsii, determining a regional pattern of genetic disparity between the species, which have largely similar life histories. Examination of the outlier SNP panel detected weak genetic differentiation between the three regions. Outlier SNPs showed promise in assigning individuals to their sampling origin and may prove useful as a management tool for species exhibiting genetic homogeneity

    Discarded catch in a multi-species trawl fishery

    Get PDF

    Population genomics of the Eastern Rock Lobster, Sagmariasus verreauxi, during spawning stock recovery from over-exploitation

    No full text
    Fisheries are currently under pressure to provide increasing amounts of seafood, causing a growing number of marine stocks to be harvested at unsustainable levels. To ensure marine resources remain sustainable, careful management of biological stocks and their genetic integrity is required. The Eastern Rock Lobster, Sagmariasus verreauxi, is commercially harvested along the New South Wales (NSW) coast of eastern Australia and is managed as a single unit. Due to overfishing, the NSW S. verreauxi stock was severely depleted in the mid-1990s but has since been rebuilding. This study evaluates the population genetic structure, putative local adaptation, and potential of a population bottleneck for NSW S. verreauxi. Using neutral single nucleotide polymorphisms (SNPs), we determined NSW S. verreauxi consist of a single genetic stock, with outlier SNPs detecting weak genetic divergence among offshore locations, and evidence of population bottlenecks at all locations. Our findings (i) confirm a single management unit is appropriate; (ii) can be used as a baseline for future genetic monitoring of NSW S. verreauxi; and (iii) highlights the importance of implementing routine genetic monitoring and collecting temporal samples to understand the full impact of overfishing on a species resilience

    Data from: Outlier SNPs detect weak regional structure against a background of genetic homogeneity in the Eastern Rock Lobster, Sagmariasus verreauxi

    No full text
    Genetic differentiation is characteristically weak in marine species making assessments of population connectivity and structure difficult. However the advent of genomic methods have increased genetic resolution, enabling studies to detect weak, but significant population differentiation within marine species. With an increasing number of studies employing high resolution genome-wide techniques, we are realising the connectivity of marine populations is often complex and quantifying this complexity can provide an understanding of the processes shaping marine species genetic structure and to inform long-term, sustainable management strategies. This study aims to assess the genetic structure, connectivity and local adaptation of the Eastern Rock Lobster (Sagmariasus verreauxi), which has a maximum pelagic larval duration of 12 months and inhabits both subtropical and temperate environments. We used 645 neutral and 15 outlier SNPs to genotype lobsters collected from the only two known breeding populations and a third episodic population — encompassing S. verreauxi’s known range. Through examination of the neutral SNP panel, we detected genetic homogeneity across the three regions, which extended across the Tasman Sea encompassing both Australian and New Zealand populations. We discuss differences in neutral genetic signature of S. verreauxi and a closely-related, co-distributed rock lobster, Jasus edwardsii, determining a regional pattern of genetic disparity between the species, which have largely similar life histories. Examination of the outlier SNP panel detected weak genetic differentiation between the three regions. Outlier SNPs showed promise in assigning individuals to their sampling origin and may prove useful as a management tool for species exhibiting genetic homogeneity

    Data from: Outlier SNPs detect weak regional structure against a background of genetic homogeneity in the Eastern Rock Lobster, Sagmariasus verreauxi

    No full text
    Genetic differentiation is characteristically weak in marine species making assessments of population connectivity and structure difficult. However the advent of genomic methods have increased genetic resolution, enabling studies to detect weak, but significant population differentiation within marine species. With an increasing number of studies employing high resolution genome-wide techniques, we are realising the connectivity of marine populations is often complex and quantifying this complexity can provide an understanding of the processes shaping marine species genetic structure and to inform long-term, sustainable management strategies. This study aims to assess the genetic structure, connectivity and local adaptation of the Eastern Rock Lobster (Sagmariasus verreauxi), which has a maximum pelagic larval duration of 12 months and inhabits both subtropical and temperate environments. We used 645 neutral and 15 outlier SNPs to genotype lobsters collected from the only two known breeding populations and a third episodic population — encompassing S. verreauxi’s known range. Through examination of the neutral SNP panel, we detected genetic homogeneity across the three regions, which extended across the Tasman Sea encompassing both Australian and New Zealand populations. We discuss differences in neutral genetic signature of S. verreauxi and a closely-related, co-distributed rock lobster, Jasus edwardsii, determining a regional pattern of genetic disparity between the species, which have largely similar life histories. Examination of the outlier SNP panel detected weak genetic differentiation between the three regions. Outlier SNPs showed promise in assigning individuals to their sampling origin and may prove useful as a management tool for species exhibiting genetic homogeneity
    corecore