9 research outputs found

    Landscape and fine-scale movements of a leaf beetle: the importance of boundary behaviour

    No full text
    Movement underpins animal spatial ecology and is often modelled as habitat-dependent correlated random walks. Here, we develop such a model for the flightless tansy leaf beetle Chrysolina graminis moving within and between patches of its host plant tansy Tanacetum vulgare. To parameterize the model, beetle movement paths on timescales of minutes were observed in uniform plots of tansy and inter-patch matrix (meadow) vegetation. Movement lasted longer, covered greater distances and had narrower turning angles in the matrix. Simulations of the model emulated an independent two-season multi-patch mark–resight study at daily timescales and included variable boundary-mediated behaviour affecting the probability of leaving habitat patches. As boundaries in the model became stronger there were disproportionately large decreases in net displacements, inter-patch movements and the proportion of beetles in the matrix. The model produced realistic patterns of population-level displacement over periods up to 13 days with fully permeable boundaries for one dataset and strong boundaries for the other. This may be explained by the heights of the tansy patches in each study, as beetles will be unable to cross the boundary near the top of a patch that emerges from the matrix. The simulations demonstrate the important effects of boundary behaviour on displacement patterns and indicate temporal and spatial variability in permeability. Realistic models of movement must therefore include behaviour at habitat boundaries

    De novo characterization of the gene-rich transcriptomes of two color-polymorphic spiders, Theridion grallator and T. californicum (Araneae: Theridiidae), with special reference to pigment genes

    Get PDF
    Abstract Background A number of spider species within the family Theridiidae exhibit a dramatic abdominal (opisthosomal) color polymorphism. The polymorphism is inherited in a broadly Mendelian fashion and in some species consists of dozens of discrete morphs that are convergent across taxa and populations. Few genomic resources exist for spiders. Here, as a first necessary step towards identifying the genetic basis for this trait we present the near complete transcriptomes of two species: the Hawaiian happy-face spider Theridion grallator and Theridion californicum. We mined the gene complement for pigment-pathway genes and examined differential expression (DE) between morphs that are unpatterned (plain yellow) and patterned (yellow with superimposed patches of red, white or very dark brown). Results By deep sequencing both RNA-seq and normalized cDNA libraries from pooled specimens of each species we were able to assemble a comprehensive gene set for both species that we estimate to be 98-99% complete. It is likely that these species express more than 20,000 protein-coding genes, perhaps 4.5% (ca. 870) of which might be unique to spiders. Mining for pigment-associated Drosophila melanogaster genes indicated the presence of all ommochrome pathway genes and most pteridine pathway genes and DE analyses further indicate a possible role for the pteridine pathway in theridiid color patterning. Conclusions Based upon our estimates, T. grallator and T. californicum express a large inventory of protein-coding genes. Our comprehensive assembly illustrates the continuing value of sequencing normalized cDNA libraries in addition to RNA-seq in order to generate a reference transcriptome for non-model species. The identification of pteridine-related genes and their possible involvement in color patterning is a novel finding in spiders and one that suggests a biochemical link between guanine deposits and the pigments exhibited by these species

    Contrasting patterns of hybridization in large house spiders (Tegenaria atrica Group, Agelenidae)

    No full text
    The integrity of species is not fixed and may vary geographically. Here we investigate the geographic distributions and interactions of species in the Tegenaria atrica group (Araneae: Agelenidae). Detailed mapping of T. saeva and T. gigantea in England and Wales shows them to be broadly allopatric in southern England with a tightly defined, and possibly long-standing, narrow zone of parapatry in central southern England. In the north of England (Yorkshire), by contrast, the species are broadly sympatric as a result of recent range expansions. GIS techniques are used to map the species distributions and to quantify, we believe for the first time, the intimacy of interspecific interactions. The extent and nature of hybridization in these two areas is examined through regression and multivariate analyses of morphology. We show that the relative incidence of hybridization is much greater in Yorkshire than within the parapatric zone in the south. Clear patterns of asymmetric introgression are observed in both northern and southern England, with a greater impact of T. gigantea on T. saeva than vice versa. We find no sign of morphological reproductive character displacement at the zone of parapatry that might indicate reinforcement, although we cannot exclude more subtle effects, for example via cuticular pheromones. The integrity of these two species seems to be breaking down in northern England, a process that might gain momentum as the gene pools become more similar
    corecore