166 research outputs found

    When Does a Journal Stop Being a New Journal?

    Get PDF
    In my editorials, you may have often read my references to Parasitologia being a new journal—we only started in 2021—but at some point, we need to move on from this “honeymoon” description [...

    Toxoplasma gondii

    Get PDF

    A rapid and simple method of detection of Blepharisma japonicum using PCR and immobilisation on FTA paper

    Get PDF
    BACKGROUND: The rapid expansion in the availability of genome and DNA sequence information has opened up new possibilities for the development of methods for detecting free-living protozoa in environmental samples. The protozoan Blepharisma japonicum was used to investigate a rapid and simple detection system based on polymerase chain reaction amplification (PCR) from organisms immobilised on FTA paper. RESULTS: Using primers designed from the α-tubulin genes of Blepharisma, specific and sensitive detection to the equivalent of a single Blepharisma cell could be achieved. Similar detection levels were found using water samples, containing Blepharisma, which were dried onto Whatman FTA paper. CONCLUSION: This system has potential as a sensitive convenient detection system for Blepharisma and could be applied to other protozoan organisms

    High frequency detection of Toxoplasma gondii DNA in human neonatal tissue from Libya

    Get PDF
    Background: Toxoplasma gondii is a parasite that causes significant disease in humans. Toxoplasmosis is normally asymptomatic, unless associated with congenital transmission, or in immunocompromised people. Congenital transmission generally occurs at low frequencies. In this study, we use PCR to investigate possible congenital transmission of T. gondii during pregnancy in a cohort of mothers from Libya. Methods: Two hundred and seventy two pregnant women (producing 276 neonates) were recruited to obtain umbilical cord tissue from their neonates at birth. DNA was extracted from umbilical cord tissue and tested for T. gondii DNA using two specific PCR protocols based on the sag 1 and sag 3 genes. Results: Toxoplasma gondii DNA was detected in the umbilical cord DNA from 27 of the 276 neonates giving a prevalence of 9.9% (95% CI: 6.8-13.9%). Compared with more commonly reported rates of congenital transmission of 0.1% of live births, this is high. There was no association of infection with unsuccessful pregnancy. Conclusions: This study shows a high frequency presence of T. gondii DNA associated with neonatal tissue at birth in this cohort of 276 neonates from Libya. Although PCR cannot detect living parasites, there is the possibility that this indicates a higher than usual frequency of congenital transmission

    High prevalence of trypanosomes in European badgers detected using ITS-PCR.

    Get PDF
    BACKGROUND: Wildlife can be important sources and reservoirs for pathogens. Trypanosome infections are common in many mammalian species, and are pathogenic in some. Molecular detection tools were used to measure trypanosome prevalence in a well-studied population of wild European badgers (Meles meles). FINDINGS: A nested ITS-PCR system, that targeted the ribosomal RNA gene locus, has been widely used to detect pathogenic human and animal trypanosomes in domestic animals in Africa and some wildlife hosts. Samples from a long-term DEFRA funded capture-mark-recapture study of wild badgers at Woodchester Park (Gloucestershire, SW England) were investigated for trypanosome prevalence. A total of 82 badger blood samples were examined by nested ITS-PCR. Twenty-nine of the samples were found to be positive for trypanosomes giving a prevalence of 35.4 % (25.9 % - 46.2 %; 95 % CI). Infection was not found to be linked to badger condition, sex or age. Analysis of DNA sequence data showed the badgers to be infected with Trypanosoma (Megatrypanum) pestanai and phylogenetic analysis showed the Woodchester badger trypanosomes and T. pestanai to cluster in the Megatrypanum clade. CONCLUSIONS: The results show that the ITS Nested PCR is an effective tool for diagnosing trypanosome infection in badgers and suggests that it could be widely used in wildlife species with unknown trypanosomes or mixed infections. The relatively high prevalence observed in these badgers raises the possibility that a significant proportion of UK badgers are naturally infected with trypanosomes

    Guanylate-binding Protein 1 (GBP1) contributes to the immunity of human mesenchymal stromal cells against toxoplasma gondii

    Get PDF
    Mesenchymal stromal cells (MSCs) have recently been shown to play important roles in mammalian host defenses against intracellular pathogens, but the molecular mechanism still needs to be clarified. We confirmed that human MSCs (hMSCs) pre-stimulated with IFN-γ showed a significant and dose-dependent ability to inhibit the growth of two types of Toxoplasma gondii (type I strain RH/GFP or type II strain PLK/RED). However, in contrast to previous reports, the anti-T. gondii activity of hMSCs was not mediated by indoleamine 2,3-dioxygenase (IDO). Genome-wide RNA-seq analysis revealed that IFN-γ increased the expression of the p65 family of guanylate-binding proteins (hGBPs) in hMSCs, especially hGBP1. To analyze the functional role of hGBPs, stable knockdowns of hGBP1, -2, -5 in hMSCs were established using a lentiviral transfection system. hGBP1 knockdown in hMSCs resulted in a significant loss of the anti-T. gondii host defense property, compared with hMSCs infected with non-targetted control sequences. hGBP2 and -5 knockdowns had no effect. Moreover, the hGBP1 accumulation on the parasitophorous vacuole (PV) membranes of IFN-γ-stimulated hMSCs might protect against T. gondii infection. Taken together, our results suggest that hGBP1 plays a pivotal role in anti-T. gondii protection of hMSCs and may shed new light on clarifying the mechanism of host defense properties of hMSCs

    Trogocytosis: revealing new insights into parasite–host interactions

    Get PDF
    Trogocytosis – a process whereby cells physically nibble and ingest membrane fragments and other components from neighboring cells – plays a critical role in host–parasite interactions by modulating parasite survival and host immune responses. This review explores trogocytosis in parasitic infections, revealing its dual roles: parasites use it for nutrient acquisition and immune evasion, whereas hosts use it for pathogen clearance. We analyze the molecular machinery driving this process, its impact on infection outcomes, and parallels in tumors/transplantation. Emerging therapeutic opportunities and unresolved challenges are critically evaluated, providing a roadmap for future research to harness trogocytosis in disease control

    Erratum to : Analysis of the mitochondrial maxicircle of Trypanosoma lewisi, a neglected human pathogen

    Get PDF
    BACKGROUND The haemoflagellate Trypanosoma lewisi is a kinetoplastid parasite which, as it has been recently reported to cause human disease, deserves increased attention. Characteristic features of all kinetoplastid flagellates are a uniquely structured mitochondrial DNA or kinetoplast, comprised of a network of catenated DNA circles, and RNA editing of mitochondrial transcripts. The aim of this study was to describe the kinetoplast DNA of T. lewisi. METHODS/RESULTS In this study, purified kinetoplast DNA from T. lewisi was sequenced using high-throughput sequencing in combination with sequencing of PCR amplicons. This allowed the assembly of the T. lewisi kinetoplast maxicircle DNA, which is a homologue of the mitochondrial genome in other eukaryotes. The assembly of 23,745 bp comprises the non-coding and coding regions. Comparative analysis of the maxicircle sequence of T. lewisi with Trypanosoma cruzi, Trypanosoma rangeli, Trypanosoma brucei and Leishmania tarentolae revealed that it shares 78 %, 77 %, 74 % and 66 % sequence identity with these parasites, respectively. The high GC content in at least 9 maxicircle genes of T. lewisi (ATPase6; NADH dehydrogenase subunits ND3, ND7, ND8 and ND9; G-rich regions GR3 and GR4; cytochrome oxidase subunit COIII and ribosomal protein RPS12) implies that their products may be extensively edited. A detailed analysis of the non-coding region revealed that it contains numerous repeat motifs and palindromes. CONCLUSIONS We have sequenced and comprehensively annotated the kinetoplast maxicircle of T. lewisi. Our analysis reveals that T. lewisi is closely related to T. cruzi and T. brucei, and may share similar RNA editing patterns with them rather than with L. tarentolae. These findings provide novel insight into the biological features of this emerging human pathogen
    corecore