520 research outputs found

    Fluctuation-Induced Interactions between Rods on Membranes and Interfaces

    Full text link
    We consider the interaction between two rods embedded in a fluctuating surface which is governed by either surface tension or rigidity. The modification of fluctuations by the rods leads to an attractive long-range interaction that falls off as 1/R41/R^4 with their separation. The orientational dependence of the resulting interaction is non-trivial and may lead to interesting patterns of rod-like objects on such surfaces.Comment: Revtex, 10 pages, one figur

    Collective shuttling of attracting particles in asymmetric narrow channels

    Get PDF
    The rectification of a single file of attracting particles subjected to a low frequency ac drive is proposed as a working mechanism for particle shuttling in an asymmetric narrow channel. Increasing the particle attraction results in the file condensing, as signalled by the dramatic enhancement of the net particle current. Magnitude and direction of the current become extremely sensitive to the actual size of the condensate, which can then be made to shuttle between two docking stations, transporting particles in one direction, with an efficiency much larger than conventional diffusive models predict

    Ligand binding and conformational dynamics of the E. coli nicotinamide nucleotide transhydrogenase revealed by hydrogen/deuterium exchange mass spectrometry

    Get PDF
    Nicotinamide nucleotide transhydrogenases are integral membrane proteins that utilizes the proton motive force to reduce NADP+ to NADPH while converting NADH to NAD+. Atomic structures of various transhydrogenases in different ligand-bound states have become available, and it is clear that the molecular mechanism involves major conformational changes. Here we utilized hydrogen/deuterium exchange mass spectrometry (HDX-MS) to map ligand binding sites and analyzed the structural dynamics of E. coli transhydrogenase. We found different allosteric effects on the protein depending on the bound ligand (NAD+, NADH, NADP+, NADPH). The binding of either NADP+ or NADPH to domain III had pronounced effects on the transmembrane helices comprising the proton-conducting channel in domain II. We also made use of cyclic ion mobility separation mass spectrometry (cyclic IMS-MS) to maximize coverage and sensitivity in the transmembrane domain, showing for the first time that this technique can be used for HDX-MS studies. Using cyclic IMS-MS, we increased sequence coverage from 68 % to 73 % in the transmembrane segments. Taken together, our results provide important new insights into the transhydrogenase reaction cycle and demonstrate the benefit of this new technique for HDX-MS to study ligand binding and conformational dynamics in membrane proteins

    Phase Behaviour of Amphiphilic Monolayers: Theory and Simulation

    Full text link
    Coarse grained models of monolayers of amphiphiles (Langmuir monolayers) have been studied theoretically and by computer simulations. We discuss some of the insights obtained with this approach, and present new simulation results which show that idealised models can successfully reproduce essential aspects of the generic phase behaviour of Langmuir monolayers.Comment: To appear in J. Phys.: Cond. Matte

    Proton Wires in an Electric Field: the Impact of Grotthuss Mechanism on Charge Translocation

    Full text link
    We present the results of the modeling of proton translocation in finite H-bonded chains in the framework of two-stage proton transport model. We explore the influence of reorientation motion of protons, as well as the effect of electric field and proton correlations on system dynamics. An increase of the reorientation energy results in the transition of proton charge from the surrounding to the inner water molecules in the chain. Proton migration along the chain in an external electric field has a step-like character, proceeding with the occurrence of electric field threshold-type effects and drastic redistribution of proton charge. Electric field applied to correlated chains induces first a formation of ordered dipole structures for lower field strength, and than, with a further field strength increase, a stabilization of states with Bjerrum D-defects. We analyze the main factors responsible for the formation/annihilation of Bjerrum defects showing the strong influence of the complex interplay between reorientation energy, electric field and temperature in the dynamics of proton wire.Comment: 28 pages, 9 figure

    Fluctuation-Induced Interactions between Rods on a Membrane

    Full text link
    We consider the interaction between two rods embedded in a fluctuating surface. The modification of fluctuations by the rods leads to an attractive long-range interaction between them. We consider fluctuations governed by either surface tension (films) or bending rigidity (membranes). In both cases the interaction falls off with the separation of the rods as 1/R41/R^4. The orientational part of the interaction is proportional to cos⁥2[Ξ1+Ξ2]\cos^2\left[ \theta_1+\theta_2 \right] in the former case, and to cos⁥2[2(Ξ1+Ξ2)]\cos^2\left[ 2\left(\theta_1+\theta_2\right) \right] in the latter, where Ξ1\theta_1 and Ξ2\theta_2 are angles between the rods and the line joining them. These interactions are somewhat reminiscent of dipolar forces and will tend to align collections of such rods into chains.Comment: REVTEX, 14 pages, with 2 Postscript figure

    Structure of symmetric and asymmetric "ripple" phases in lipid bilayers

    Full text link
    We reproduce the symmetric and asymmetric ``rippled'' PÎČâ€ČP_{\beta'} states of lipid membranes by Monte Carlo simulations of a coarse-grained molecular model for lipid-solvent mixtures. The structure and properties compare favorably with experiments. The asymmetric ripple state is characterized by a periodic array of fully interdigitated ``defect'' lines. The symmetric ripple state maintains a bilayer structure, but is otherwise structurally similar. The formation of both ripple states is driven by the propensity of lipid molecules with large head groups to exhibit splay.Comment: 4 pages, 4 figure

    The influence of anesthetics, neurotransmitters and antibiotics on the relaxation processes in lipid membranes

    Get PDF
    In the proximity of melting transitions of artificial and biological membranes fluctuations in enthalpy, area, volume and concentration are enhanced. This results in domain formation, changes of the elastic constants, changes in permeability and slowing down of relaxation processes. In this study we used pressure perturbation calorimetry to investigate the relaxation time scale after a jump into the melting transition regime of artificial lipid membranes. This time corresponds to the characteristic rate of domain growth. The studies were performed on single-component large unilamellar and multilamellar vesicle systems with and without the addition of small molecules such as general anesthetics, neurotransmitters and antibiotics. These drugs interact with membranes and affect melting points and profiles. In all systems we found that heat capacity and relaxation times are related to each other in a simple manner. The maximum relaxation time depends on the cooperativity of the heat capacity profile and decreases with a broadening of the transition. For this reason the influence of a drug on the time scale of domain formation processes can be understood on the basis of their influence on the heat capacity profile. This allows estimations of the time scale of domain formation processes in biological membranes.Comment: 12 pages, 6 figure

    A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information

    Get PDF
    An updated genome-scale reconstruction of the metabolic network in Escherichia coli K-12 MG1655 is presented. This updated metabolic reconstruction includes: (1) an alignment with the latest genome annotation and the metabolic content of EcoCyc leading to the inclusion of the activities of 1260 ORFs, (2) characterization and quantification of the biomass components and maintenance requirements associated with growth of E. coli and (3) thermodynamic information for the included chemical reactions. The conversion of this metabolic network reconstruction into an in silico model is detailed. A new step in the metabolic reconstruction process, termed thermodynamic consistency analysis, is introduced, in which reactions were checked for consistency with thermodynamic reversibility estimates. Applications demonstrating the capabilities of the genome-scale metabolic model to predict high-throughput experimental growth and gene deletion phenotypic screens are presented. The increased scope and computational capability using this new reconstruction is expected to broaden the spectrum of both basic biology and applied systems biology studies of E. coli metabolism
    • 

    corecore