66 research outputs found

    Fully automated deep learning powered calcium scoring in patients undergoing myocardial perfusion imaging

    Full text link
    BACKGROUND To assess the accuracy of fully automated deep learning (DL) based coronary artery calcium scoring (CACS) from non-contrast computed tomography (CT) as acquired for attenuation correction (AC) of cardiac single-photon-emission computed tomography myocardial perfusion imaging (SPECT-MPI). METHODS AND RESULTS Patients were enrolled in this study as part of a larger prospective study (NCT03637231). In this study, 56 Patients who underwent cardiac SPECT-MPI due to suspected coronary artery disease (CAD) were prospectively enrolled. All patients underwent non-contrast CT for AC of SPECT-MPI twice. CACS was manually assessed (serving as standard of reference) on both CT datasets (n = 112) and by a cloud-based DL tool. The agreement in CAC scores and CAC score risk categories was quantified. For the 112 scans included in the analysis, interscore agreement between the CAC scores of the standard of reference and the DL tool was 0.986. The agreement in risk categories was 0.977 with a reclassification rate of 3.6%. Heart rate, image noise, body mass index (BMI), and scan did not significantly impact (p=0.09 - p=0.76) absolute percentage difference in CAC scores. CONCLUSION A DL tool enables a fully automated and accurate estimation of CAC scores in patients undergoing non-contrast CT for AC of SPECT-MPI

    Experimental cultivation of the Mediterranean calanoid copepods

    Get PDF
    A pilot re-circulating system was used for the cultivation of two Mediterranean calanoid copepods: Temora stylifera and Centropages typicus. The system automatically concentrated the naupliar and copepodite stages. Temora stylifera was fed the flagellate Rhodomonas baltica or Prorocentrum minimum, whereas C. typicus was fed with a mixture of R. baltica or P. minimum and Tetraselmis suecica. Both copepods also received Isochrysis galbana. After 21 days, the T. stylifera population increased 26-fold, reaching a density of 38 000 individuals, mostly represented by nauplii (88%). The maximum density recorded was 380 ind. L−1, with a production of 370 nauplii L−1. On average, the egg hatching success for this copepod during the rearing period was 54%, with the highest viability in April and May (>75%). The C. typicus population increased more than 10-fold after 7 weeks of rearing, reaching a density of 123 000 individuals, mainly represented by nauplii (>90%). The highest naupliar production was 100 ind. L−1, with a mean egg hatching success of 68%. This system may be useful to produce nauplii and copepodite stages to be used as live, alternative or complementary food for fish larvae or to provide a ready source of organisms for physiological and bioassay studies

    Automated F18-FDG PET/CT image quality assessment using deep neural networks on a latest 6-ring digital detector system

    Get PDF
    To evaluate whether a machine learning classifier can evaluate image quality of maximum intensity projection (MIP) images from F18-FDG-PET scans. A total of 400 MIP images from F18-FDG-PET with simulated decreasing acquisition time (120 s, 90 s, 60 s, 30 s and 15 s per bed-position) using block sequential regularized expectation maximization (BSREM) with a beta-value of 450 and 600 were created. A machine learning classifier was fed with 283 images rated "sufficient image quality" and 117 images rated "insufficient image quality". The classification performance of the machine learning classifier was assessed by calculating sensitivity, specificity, and area under the receiver operating characteristics curve (AUC) using reader-based classification as the target. Classification performance of the machine learning classifier was AUC 0.978 for BSREM beta 450 and 0.967 for BSREM beta 600. The algorithm showed a sensitivity of 89% and 94% and a specificity of 94% and 94% for the reconstruction BSREM 450 and 600, respectively. Automated assessment of image quality from F18-FDG-PET images using a machine learning classifier provides equivalent performance to manual assessment by experienced radiologists

    Can We Predict Skeletal Lesion on Bone Scan Based on Quantitative PSMA PET/CT Features?

    Get PDF
    Objective: The increasing use of PSMA-PET/CT for restaging prostate cancer (PCa) leads to a patient shift from a non-metastatic situation based on conventional imaging (CI) to a metastatic situation. Since established therapeutic pathways have been designed according to CI, it is unclear how this should be translated to the PSMA-PET/CT results. This study aimed to investigate whether PSMA-PET/CT and clinical parameters could predict the visibility of PSMA-positive lesions on a bone scan (BS). Methods: In four different centers, all PCa patients with BS and PSMA-PET/CT within 6 months without any change in therapy or significant disease progression were retrospectively selected. Up to 10 non-confluent clear bone metastases were selected per PSMA-PET/CT and SUVmax, SUVmean, PSMAtot, PSMAvol, density, diameter on CT, and presence of cortical erosion were collected. Clinical variables (age, PSA, Gleason Score) were also considered. Two experienced double-board physicians decided whether a bone metastasis was visible on the BS, with a consensus readout for discordant findings. For predictive performance, a random forest was fit on all available predictors, and its accuracy was assessed using 10-fold cross-validation performed 10 times. Results: A total of 43 patients were identified with 222 bone lesions on PSMA-PET/CT. A total of 129 (58.1%) lesions were visible on the BS. In the univariate analysis, all PSMA-PET/CT parameters were significantly associated with the visibility on the BS (p < 0.001). The random forest reached a mean accuracy of 77.6% in a 10-fold cross-validation. Conclusions: These preliminary results indicate that there might be a way to predict the BS results based on PSMA-PET/CT, potentially improving the comparability between both examinations and supporting decisions for therapy selection

    Low-dose CT from myocardial perfusion SPECT/CT allows the detection of anemia in preoperative patients

    Full text link
    BACKGROUND To assess whether low-dose CT for attenuation correction of myocardial perfusion single-photon emission computed tomography (SPECT) allows for identification of anemic patients and grading anemia severity. METHODS AND RESULTS Patients who underwent a preoperative blood-test and low-dose CT scan, as a part of a cardiac SPECT exam, between 01 January 2015 and 31 December 2017 were enrolled in this retrospective study. Hemoglobin (Hb) levels and hematocrit were derived from clinical records. CT images were visually assessed (qualitative analysis) for the detection of inter-ventricular septum sign (IVSS) and aortic rim sign (ARS) and quantitative analysis were performed. The diagnostic accuracy for detecting anemia was compared using Hb values as the standard of reference. A total of 229 patients were included (110 with anemia; 57 mild; 46 moderate; 7 severe). The AUC of IVSS and ARS were 0.830 and 0.669, respectively (p<0.0001). The quantitative analysis outperformed ARS and IVSS; (AUC of 0.893, p=0.29). The optimal anemia cut-off using Youden index was 4.5 HU. CONCLUSION Quantitative analysis derived from low-dose CT images, as a part of cardiac SPECT exams, have a diagnostic accuracy similar to that of hematocrit for the detection of anemia and may allow discriminating different anemia severities

    Frequency and intensity of [18F]-PSMA-1007 uptake after COVID-19 vaccination in clinical PET

    Full text link
    Objectives: To assess the frequency and intensity of [18F]-prostate-specific membrane antigen (PSMA)-1007 axillary uptake in lymph nodes ipsilateral to COVID-19 vaccination with BNT162b2 (Pfizer-BioNTech) or mRNA-1273 (Moderna) in patients with prostate cancer referred for oncological [18F]-PSMA positron emission tomography (PET)/CT or PET/MR imaging. Methods: 126 patients undergoing [18F]-PSMA PET/CT or PET/MR imaging were retrospectively included. [18F]-PSMA activity (maximum standardized uptake value) of ipsilateral axillary lymph nodes was measured and compared with the non-vaccinated contralateral side and with a non-vaccinated negative control group. [18F]-PSMA active lymph node metastases were measured to serve as quantitative reference. Results: There was a significant difference in maximum standardized uptake value in ipsilateral and compared to contralateral axillary lymph nodes in the vaccination group (n = 63, p < 0.001) and no such difference in the non-vaccinated control group (n = 63, p = 0.379). Vaccinated patients showed mildly increased axillary lymph node [18F]-PSMA uptake as compared to non-vaccinated patients (p = 0.03). [18F]-PSMA activity of of lymph node metastases was significantly higher (p < 0.001) compared to axillary lymph nodes of vaccinated patients. Conclusion: Our data suggest mildly increased [18F]-PSMA uptake after COVID-19 vaccination in ipsilateral axillary lymph nodes. However, given the significantly higher [18F]-PSMA uptake of prostatic lymph node metastases compared to "reactive" nodes after COVID-19 vaccination, no therapeutic and diagnostic dilemma is to be expected. Advances in knowledge: No specific preparations or precautions (e.g. adaption of vaccination scheduling) need to be undertaken in patients undergoing [18F]-PSMA PET imaging after COVID-19 vaccination

    Characterization of hypermetabolic lymph nodes after SARS-CoV-2 vaccination using PET-CT derived node-RADS, in patients with melanoma

    Get PDF
    This study aimed to evaluate the diagnostic accuracy of Node Reporting and Data System (Node-RADS) in discriminating between normal, reactive, and metastatic axillary LNs in patients with melanoma who underwent SARS-CoV-2 vaccination. Patients with proven melanoma who underwent a 2-[18^{18}F]-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography (2-[18^{18}F]-FDG PET/CT) between February and April 2021 were included in this retrospective study. Primary melanoma site, vaccination status, injection site, and 2-[18^{18}F]-FDG PET/CT were used to classify axillary LNs into normal, inflammatory, and metastatic (combined classification). An adapted Node-RADS classification (A-Node-RADS) was generated based on LN anatomical characteristics on low-dose CT images and compared to the combined classification. 108 patients were included in the study (54 vaccinated). HALNs were detected in 42 patients (32.8%), of whom 97.6% were vaccinated. 172 LNs were classified as normal, 30 as inflammatory, and 14 as metastatic using the combined classification. 152, 22, 29, 12, and 1 LNs were classified A-Node-RADS 1, 2, 3, 4, and 5, respectively. Hence, 174, 29, and 13 LNs were deemed benign, equivocal, and metastatic. The concordance between the classifications was very good (Cohen's k: 0.91, CI 0.86-0.95; p-value < 0.0001). A-Node-RADS can assist the classification of axillary LNs in melanoma patients who underwent 2-[18^{18}F]-FDG PET/CT and SARS-CoV-2 vaccination

    Opportunistic deep learning powered calcium scoring in oncologic patients with very high coronary artery calcium (≥ 1000) undergoing 18F-FDG PET/CT

    Full text link
    Our aim was to identify and quantify high coronary artery calcium (CAC) with deep learning (DL)-powered CAC scoring (CACS) in oncological patients with known very high CAC (≥ 1000) undergoing 18F-FDG-PET/CT for re-/staging. 100 patients were enrolled: 50 patients with Agatston scores ≥ 1000 (high CACS group), 50 patients with Agatston scores < 1000 (negative control group). All patients underwent oncological 18F-FDG-PET/CT and cardiac SPECT myocardial perfusion imaging (MPI) by 99mTc-tetrofosmin within 6 months. CACS was manually performed on dedicated non-contrast ECG-gated CT scans obtained from SPECT-MPI (reference standard). Additionally, CACS was performed fully automatically with a user-independent DL-CACS tool on non-contrast, free-breathing, non-gated CT scans from 18F-FDG-PET/CT examinations. Image quality and noise of CT scans was assessed. Agatston scores obtained by manual CACS and DL tool were compared. The high CACS group had Agatston scores of 2200 ± 1620 (reference standard) and 1300 ± 1011 (DL tool, average underestimation of 38.6 ± 26%) with an intraclass correlation of 0.714 (95% CI 0.546, 0.827). Sufficient image quality significantly improved the DL tool's capability of correctly assigning Agatston scores ≥ 1000 (p = 0.01). In the control group, the DL tool correctly assigned Agatston scores < 1000 in all cases. In conclusion, DL-based CACS performed on non-contrast free-breathing, non-gated CT scans from 18F-FDG-PET/CT examinations of patients with known very high (≥ 1000) CAC underestimates CAC load, but correctly assigns an Agatston scores ≥ 1000 in over 70% of cases, provided sufficient CT image quality. Subgroup analyses of the control group showed that the DL tool does not generate false-positives

    A third of the radiotracer dose: two decades of progress in pediatric [18^{18}F]fluorodeoxyglucose PET/CT and PET/MR imaging

    Full text link
    OBJECTIVES To assess the evolution of administered radiotracer activity for F-18-fluorodeoxyglucose (18F-FDG) PET/CT or PET/MR in pediatric patients (0-16 years) between years 2000 and 2021. METHODS Pediatric patients (≤ 16 years) referred for 18F-FDG PET/CT or PET/MR imaging of the body during 2000 and 2021 were retrospectively included. The amount of administered radiotracer activity in megabecquerel (MBq) was recorded, and signal-to-noise ratio (SNR) was measured in the right liver lobe with a 4 cm3^{3} volume of interest as an indicator for objective image quality. Descriptive statistics were computed. RESULTS Two hundred forty-three children and adolescents underwent a total of 466 examinations. The median injected 18F-FDG activity in MBq decreased significantly from 296 MBq in 2000-2005 to 100 MBq in 2016-2021 (p < 0.001), equaling approximately one-third of the initial amount. The median SNR ratio was stable during all years with 11.7 (interquartile range [IQR] 10.7-12.9, p = 0.133). CONCLUSIONS Children have benefited from a massive reduction in the administered 18F-FDG dose over the past 20 years without compromising objective image quality. CLINICAL RELEVANCE STATEMENT Radiotracer dose was reduced considerably over the past two decades of pediatric F-18-fluorodeoxyglucose PET/CT and PET/MR imaging highlighting the success of technical innovations in pediatric PET imaging. KEY POINTS • The evolution of administered radiotracer activity for F-18-fluorodeoxyglucose (18F-FDG) PET/CT or PET/MR in pediatric patients (0-16 years) between 2000 and 2021 was assessed. • The injected tracer activity decreased by 66% during the study period from 296 megabecquerel (MBq) to 100 MBq (p < 0.001). • The continuous implementation of technical innovations in pediatric hybrid 18F-FDG PET has led to a steady decrease in the amount of applied radiotracer, which is particularly beneficial for children who are more sensitive to radiation

    Dating stalagmite from Caverna do Diabo (Devil'S Cave) by TL and EPR techniques

    Get PDF
    A cylindrical fragment of stalagmite from Caverna do Diabo, State of Sao Paulo, Brazil, has been studied and dated by thermoluminescence and electron paramagnetic resonance techniques. The thermoluminescence glow curves of stalagmite samples and subsequently gamma irradiated, have shown rise of three peaks at 135, 180 and 265 degrees C. From electron paramagnetic resonance spectra of stalagmite was possible to clearly identify three paramagnetic centers in the g = 2.0 region: Centers I, II and III are due to, CO3- and CO33-, respectively. The additive method was applied to calculate the accumulated dose using thermoluminescence peak at 265 degrees C and the electron paramagnetic resonance signal at g = 1.9973 of CO2- radical. The ages of the different slices of stalagmite were determined from the D-ac-values and D-an-value, obtaining an average of 86410 for central slice, 53421 for second slice, 31490 for third slice and 46390 years B.P. for the central region of upper end.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Univ Sao Paulo, Inst Fis, Rua Matao,187 Cidade Univ, BR-05508090 Sao Paulo, SP, BrazilUniv Fed Sao Paulo, Dept Ciencias Mar, Rua Doutor Carvalho de Mendonca 144, BR-11070100 Santos, SP, BrazilIPEN CNEN SP, Inst Pesquisas Energet & Nucl, Av Prof Lineu Prestes,2242 Cidade Univ, BR-05508000 Sao Paulo, SP, BrazilUniv Nacl San Agustin, Fac Ciencias Nat & Formales, Escuela Profes Fis, Av Independencia S-N, Arequipa, PeruUniv Sao Paulo, Escola Politecn, Dept Engn Met & Mat, Av Prof Mello Moraes 2463, BR-05508030 Sao Paulo, SP, BrazilDepartamento de Ciências do Mar, Universidade Federal de São Paulo, Rua Doutor Carvalho de Mendonça, 144, 11070-100 Santos, SP, BrazilFAPESP: 2014/03085-0CAPES: BEX-9612130Web of Scienc
    corecore