7 research outputs found
Neuropsychological Disorders Indicative of Postresuscitation Encephalopaty in Rats
El propósito de este estudio fue examinar el efecto de una muerte clínica de 12 minutos de duración sobre el comportamiento innato y adquirido, la concentración amino biogénica, y la composición y cantidad de las poblaciones neuronales en regiones específicas en ratas blancas. El estudio muestra que durante el período con restauración formal del estatus neurológico, hay cambios en los animales en la reactividad emocional, las reacciones de orientación-exploración, trastornos de aprendizaje y memoria, reducción de la tolerancia al ejercicio y la sensibilidad al dolor. Estos procesos se acompañan de alteraciones en los niveles de serotonina y norepinefrina en la corteza cerebral frontal, en los niveles de dopamina y serotonina en el cuerpo estriado, ciertos índices bioquímicos en el plasma sanguíneo y pérdida neuronal en el sector CA1 del hipocampo y en porciones laterales del cerebelo.The aim of this research was to study the effect of 12-minute clinical death on innate and acquired behavior, biogenic amine concentration, and the composition and quantity of neural populations in specific brain regions of white rats. The study shows that in animals during the postresuscitation period with formal restoration of neurological status, there are changes in emotional reactivity, orientation-exploration reactions, impairment of learning and memory, decrease in exercise tolerance and pain sensitivity. These processes are accompanied by alterations in serotonin and norepinephrine levels in the frontal cerebral cortex, dopamine and serotonin levels in the striatum, certain biochemical indices in blood plasma and neural loss in the CA1 sector of the hippocampus and lateral portions of the cerebellum
Two approaches to the use of benzo[c][1,2]oxaboroles as active fragments for synthetic transformation of clarithromycin
Clarithromycin (active against Gram positive infections) and 1-hydroxy-1,3-dihydrobenzo[c][1,2]oxaborole derivatives (effective for Gram negative microbes) are the ligands of bacterial RNA. The antimicrobial activities of these benzoxaboroles linked with clarithromycin at 9 or 4″ position were compared. Two synthetic pathways for these conjugates were elaborated. First pathway explored the substitution of the C-9 carbonyl group of macrolactone’s cycle via oxime linker, the second direction used the modification of the 4″-O-group of cladinose via the formation of carbamates of benzoxaboroles. 4″-O-(3-S-(1-Hydroxy-1,3-dihydro-benzo[c][1,2]oxaborole)-methyl-carbamoyl-clarithromycin showed twofold decrease in MICs for S. epidermidis and S. pneumoniae than clarithromycin. 4″-O-Modified clarithromycin demonstrated an efficacy against Gram positive strains only. Compounds with C-9 substitution were more active than 4″-O-substituted antibiotics for susceptible strains E. coli tolC and did not exceed the activity of initial antibiotics
Thienoquinolines as Novel Disruptors of the PKC epsilon/RACK2 Protein-Protein Interaction
Ten protein kinase C (PKC) isozymes play divergent roles in signal transduction. Because of sequence similarities, it is particularly difficult to generate isozyme-selective small molecule inhibitors. In order to identify such a selective binder, we derived a pharmacophore model from the peptide EAVSLKPT, a fragment of PKCε that inhibits the interaction of PKCε and receptor for activated C-kinase 2 (RACK2). A database of 330 000 molecules was screened in silico, leading to the discovery of a series of thienoquinolines that disrupt the interaction of PKCε with RACK2 in vitro. The most active molecule, N-(3-acetylphenyl)-9-amino-2,3-dihydro-1,4-dioxino[2,3-g]thieno[2,3-b]quinoline-8-carboxamide (8), inhibited this interaction with a measured IC50 of 5.9 μM and the phosphorylation of downstream target Elk-1 in HeLa cells with an IC50 of 11.2 μM. Compound 8 interfered with MARCKS phosphorylation and TPA-induced translocation of PKCε (but not that of PKCδ) from the cytosol to the membrane. The compound reduced the migration of HeLa cells into a gap, reduced invasion through a reconstituted basement membrane matrix, and inhibited angiogenesis in a chicken egg assay
Thienoquinolines as Novel Disruptors of the PKCε/RACK2 Protein–Protein Interaction
Ten
protein kinase C (PKC) isozymes play divergent roles in signal transduction.
Because of sequence similarities, it is particularly difficult to
generate isozyme-selective small molecule inhibitors. In order to
identify such a selective binder, we derived a pharmacophore model
from the peptide EAVSLKPT, a fragment of PKCε that inhibits
the interaction of PKCε and receptor for activated C-kinase
2 (RACK2). A database of 330 000 molecules was screened in
silico, leading to the discovery of a series of thienoquinolines that
disrupt the interaction of PKCε with RACK2 in vitro. The most
active molecule, <i>N</i>-(3-acetylphenyl)-9-amino-2,3-dihydro-1,4-dioxino[2,3-<i>g</i>]thieno[2,3-<i>b</i>]quinoline-8-carboxamide
(<b>8</b>), inhibited this interaction with a measured IC<sub>50</sub> of 5.9 μM and the phosphorylation of downstream target
Elk-1 in HeLa cells with an IC<sub>50</sub> of 11.2 μM. Compound <b>8</b> interfered with MARCKS phosphorylation and TPA-induced translocation
of PKCε (but not that of PKCδ) from the cytosol to the
membrane. The compound reduced the migration of HeLa cells into a
gap, reduced invasion through a reconstituted basement membrane matrix,
and inhibited angiogenesis in a chicken egg assay
Thienoquinolines as Novel Disruptors of the PKCε/RACK2 Protein–Protein Interaction
International audienceTen protein kinase C (PKC) isozymes play divergent roles in signal transduction. Because of sequence similarities, it is particularly difficult to generate isozyme-selective small molecule inhibitors. In order to identify such a selective binder, we derived a pharmacophore model from the peptide EAVSLKPT, a fragment of PKCε that inhibits the interaction of PKCε and receptor for activated C-kinase 2 (RACK2). A database of 330 000 molecules was screened in silico, leading to the discovery of a series of thienoquinolines that disrupt the interaction of PKCε with RACK2 in vitro. The most active molecule, N-(3-acetylphenyl)-9-amino-2,3-dihydro-1,4-dioxino[2,3-g]thieno[2,3-b]quinoline-8-carboxamide (8), inhibited this interaction with a measured IC50 of 5.9 μM and the phosphorylation of downstream target Elk-1 in HeLa cells with an IC50 of 11.2 μM. Compound 8 interfered with MARCKS phosphorylation and TPA-induced translocation of PKCε (but not that of PKCδ) from the cytosol to the membrane. The compound reduced the migration of HeLa cells into a gap, reduced invasion through a reconstituted basement membrane matrix, and inhibited angiogenesis in a chicken egg assay