13 research outputs found

    The role of TGFBI in mesothelioma and breast cancer: association with tumor suppression

    Get PDF
    Transforming growth factor β induced (TGFBI) product, an extracellular matrix (ECM) protein, has been implicated as a putative tumor suppressor in recent studies. Our previous findings revealed that expression of TGFBI gene is down-regulated in a variety of cancer cell lines and clinical tissue samples. In this study, ectopic expression of TGFBI was used to ascertain its role as a tumor suppressor and to determine the underlying mechanism of mesothelioma and breast cancer. Cells were stably transfected with pRc/CMV2-TGFBI and pRc/CMV2-empty vector with Lipofectamine Plus. Ectopic expression of TGFBI was quantified by using quantitative PCR and Western-blotting. Characterization of cell viability was assessed using growth curve, clonogenic survival and soft agar growth. The potential of tumor formation was evaluated by an in vivo mouse model. Cell cycle was analyzed via flow cytometry. Expressions of p21, p53, p16 and p14 were examined using Western-blotting. Senescent cells were sorted by using a Senescence β-Galactosidase Staining Kit. Telomerase activity was measured using quantitative telomerase detection kit. In this study, an ectopic expression of TGFBI in two types of cancer cell lines, a mesothelioma cell line NCI-H28 and a breast cancer cell line MDA-MB-231 was found to have reduced the cellular growth, plating efficiency, and anchorage-independent growth. The tumorigenicity of these cancer cell lines as determined by subcutaneous inoculation in nude mice was similarly suppressed by TGFBI expression. Likewise, TGFBI expression reduced the proportion of S-phase while increased the proportion of G1 phase in these cells. The redistribution of cell cycle phase after re-expression of TGFBI was correspondent with transiently elevated expression of p21 and p53. The activities of senescence-associated β-galactosidase and telomerase were enhanced in TGFBI-transfected cells. Collectively, these results imply that TGFBI plays a suppressive role in the development of mesothelioma and breast cancer cells, possibly through inhibitions of cell proliferation, delaying of G1-S phase transition, and induction of senescence

    Omics-based interpretation of synergism in a soil-derived cellulose-degrading microbial community

    Get PDF
    Reaching a comprehensive understanding of how nature solves the problem of degrading recalcitrant biomass may eventually allow development of more efficient biorefining processes. Here we interpret genomic and proteomic information generated from a cellulolytic microbial consortium (termed F1RT) enriched from soil. Analyses of reconstructed bacterial draft genomes from all seven uncultured phylotypes in F1RT indicate that its constituent microbes cooperate in both cellulose-degrading and other important metabolic processes. Support for cellulolytic inter-species cooperation came from the discovery of F1RT microbes that encode and express complimentary enzymatic inventories that include both extracellular cellulosomes and secreted free-enzyme systems. Metabolic reconstruction of the seven F1RT phylotypes predicted a wider genomic rationale as to how this particular community functions as well as possible reasons as to why biomass conversion in nature relies on a structured and cooperative microbial community

    Sodium Arsenite Exposure Inhibits AKT and Stat3 Activation, Suppresses Self-Renewal and Induces Apoptotic Death of Embryonic Stem Cells

    Get PDF
    Sodium arsenite exposure at concentration >5 μM may induce embryotoxic and teratogenic effects in animal models. Long-term health effects of sodium arsenite from contaminated drinking water may result in different forms of cancer and neurological abnormalities. As cancer development processes seem to be originated in stem cells, we have chosen to examine the effects of sodium arsenite on signaling pathways and the corresponding transcription factors that regulate cell viability and self-renewal in mouse embryonic stem cells (ESC) and mouse neural stem/precursor cells. We demonstrated that the crucial signaling pathway, which was substantially suppressed by sodium arsenite exposure (4 μM) in ESC, was the PI3K–AKT pathway linked with numerous downstream targets that control cell survival and apoptosis. Furthermore, the whole core transcription factor circuitry that control self-renewal of mouse ESC (Stat3-P-Tyr705, Oct4, Sox2 and Nanog) was strongly down-regulated by sodium arsenite (4 μM) exposure. This was followed by G2/M arrest and induction of the mitochondrial apoptotic pathway that might be suppressed by caspase-9 and caspase-3 inhibitors. In contrast to mouse ESC with very low endogenous IL6, mouse neural stem/precursor cells (C17.2 clone immortalized by v-myc) with high endogenous production of IL6 exhibited a strong resistance to cytotoxic effects of sodium arsenite that could be decreased by inhibitory anti-IL6 antibody or Stat3 inhibition. In summary, our data demonstrated suppression of self-renewal and induction of apoptosis in mouse ESC by sodium arsenite exposure, which was further accelerated due to simultaneous inhibition of the protective PI3K–AKT and Stat3-dependent pathways

    Receptor-Specific Regulation of Phosphatidylinositol 3′-Kinase Activation by the Protein Tyrosine Phosphatase Shp2

    Get PDF
    Receptor tyrosine kinases (RTKs) play distinct roles in multiple biological systems. Many RTKs transmit similar signals, raising questions about how specificity is achieved. One potential mechanism for RTK specificity is control of the magnitude and kinetics of activation of downstream pathways. We have found that the protein tyrosine phosphatase Shp2 regulates the strength and duration of phosphatidylinositol 3′-kinase (PI3K) activation in the epidermal growth factor (EGF) receptor signaling pathway. Shp2 mutant fibroblasts exhibit increased association of the p85 subunit of PI3K with the scaffolding adapter Gab1 compared to that for wild-type (WT) fibroblasts or Shp2 mutant cells reconstituted with WT Shp2. Far-Western analysis suggests increased phosphorylation of p85 binding sites on Gab1. Gab1-associated PI3K activity is increased and PI3K-dependent downstream signals are enhanced in Shp2 mutant cells following EGF stimulation. Analogous results are obtained in fibroblasts inducibly expressing dominant-negative Shp2. Our results suggest that, in addition to its role as a positive component of the Ras-Erk pathway, Shp2 negatively regulates EGF-dependent PI3K activation by dephosphorylating Gab1 p85 binding sites, thereby terminating a previously proposed Gab1-PI3K positive feedback loop. Activation of PI3K-dependent pathways following stimulation by other growth factors is unaffected or decreased in Shp2 mutant cells. Thus, Shp2 regulates the kinetics and magnitude of RTK signaling in a receptor-specific manner

    A POP-1 repressor complex restricts inappropriate cell type-specific gene transcription during Caenorhabditis elegans embryogenesis

    No full text
    In Caenorhabditis elegans, histone acetyltransferase CBP-1 counteracts the repressive activity of the histone deacetylase HDA-1 to allow endoderm differentiation, which is specified by the E cell. In the sister MS cell, the endoderm fate is prevented by the action of an HMG box-containing protein, POP-1, through an unknown mechanism. In this study, we show that CBP-1, HDA-1 and POP-1 converge on end-1, an initial endoderm-determining gene. In the E lineage, an essential function of CBP-1 appears to be the activation of end-1 transcription. We further identify a molecular mechanism for the endoderm-suppressive effect of POP-1 in the MS lineage by demonstrating that POP-1 functions as a transcriptional repressor that inhibits inappropriate end-1 transcription. We provide evidence that POP-1 represses transcription via the recruitment of HDA-1 and UNC-37, the C.elegans homolog of the co-repressor Groucho. These findings demonstrate the importance of the interplay between acetyltransferases and deacetylases in the regulation of a critical cell fate-determining gene during development. Furthermore, they identify a strategy by which concerted actions of histone deacetylases and other co-repressors ensure maximal repression of inappropriate cell type-specific gene transcription

    TGFBI

    No full text

    GWAS, MWAS and mGWAS provide insights into precision agriculture based on genotype-dependent microbial effects in foxtail millet

    No full text
    Genetic and environmental factors collectively determine plant growth and yield. In the past 20 years, genome-wide association studies (GWAS) have been conducted on crops to decipher genetic loci that contribute to growth and yield, however, plant genotype appears to be insufficient to explain the trait variations. Here, we unravel the associations between genotypic, phenotypic, and rhizoplane microbiota variables of 827 foxtail millet cultivars by an integrated GWAS, microbiome-wide association studies (MWAS) and microbiome genome-wide association studies (mGWAS) method. We identify 257 rhizoplane microbial biomarkers associated with six key agronomic traits and validated the microbial-mediated growth effects on foxtail millet using marker strains isolated from the field. The rhizoplane microbiota composition is mainly driven by variations in plant genes related to immunity, metabolites, hormone signaling and nutrient uptake. Among these, the host immune gene FLS2 and transcription factor bHLH35 are widely associated with the microbial taxa of the rhizoplane. We further uncover a plant genotype-microbiota interaction network that contributes to phenotype plasticity. The microbial-mediated growth effects on foxtail millet are dependent on the host genotype, suggesting that precision microbiome management could be used to engineer high-yielding cultivars in agriculture systems

    Neoplastic Transformation of Human Small Airway Epithelial Cells Induced by Arsenic

    No full text
    Human small airway epithelial cells (SAECs) previously immortalized with human telomerase reverse transcriptase (h-TERT) were continuously treated with sodium arsenite at a dose of 0.5 μg/mL in culture for up to 6 months. Arsenic-treated cells progressively displayed an increase in transformed phenotype including enhanced growth saturation density, plating efficiency, and anchorage-independent growth and invasion capability compared with their nontreated control cells. To determine whether arsenic-induced cell transformation was associated with genomic instability, treated and control cells were also analyzed for micronuclei formation. A 4.8-fold increase in micronuclei incidence in arsenic-treated cells was detected in conjunction with increased N-phosphonacetyl-l-aspartate (PALA)-resistant characteristics. In addition, arsenic-treated cells showed an increase in c-H-ras, c-myc, and c-fos protein expression relative to controls. The change in oncoprotein expression correlated with a decrease in wild-type p53 expression and hyperphosphorylated retinoblastoma. Taken together, these results strongly suggest that h-TERT immortalized human small airway epithelial cells underwent step-wise transformation after inorganic arsenic treatment
    corecore