11 research outputs found

    Poly (lactic-co-glycolic acid)-encapsulated iodine-131 nanoparticles fabricated with rhTSH induce apoptosis and immobilization of thyroid cancer cells

    Get PDF
    BackgroundAggressive thyroid carcinoma (ATC) usually loses radioiodine avidity to iodine-131 (131I) due to the downregulation of sodium/iodide symporter (NIS). The expression of thyroid stimulating hormone receptor (TSHR) is more persistent than NIS and the administration of recombinant human thyroid stimulating hormone (rhTSH) promotes de novo NIS synthesis. Hence, exploring methods integrating 131I with rhTSH might be a feasible therapeutic strategy for selective delivery of 131I into thyroid cancer to fortify the effect of radioiodine ablation.MethodsThe 131I, poly (lactic-co-glycolic acid) (PLGA) and rhTSH were used to synthesize of the 131I-PLGA-rhTSH nanoparticles. The characteristics of the 131I-PLGA-rhTSH nanoparticles was determined using a light microscopy, scanning electron microscopy (SEM), autoradiography and immunofluorescence (IF) staining. The diameter of the 131I-PLGA-rhTSH nanoparticles was measured with a Mastersizer 3000, and the encapsulation efficiency (EF) of 131I in 131I-PLGA-rhTSH nanoparticles and the radioactivity of a single nanoparticle were determined. Then, the mouse tumor xenograft model was established, and the biodistribution and effect of 131I-PLGA-rhTSH nanoparticles on apoptosis of thyroid cance cells were investigated in vivo. Thereafter, the role of 131I-PLGA-rhTSH nanoparticles in cell viability using cell counting kit-8 and lactate dehydrogenase (LDH) release assays. Subsequently, the underlying mechanism of 131I-PLGA-rhTSH nanoparticles in reducing cell viability was assessed using immunostaining, boyden invasion assays and phalloidin staining.ResultsOur results showed that the method of developing nanoparticles-encapsulated 131I using poly (lactic-co-glycolic acid) (PLGA) and modified with rhTSH (131I-PLGA-rhTSH), was a feasible avenue for the integration of 131I and rhTSH. Meanwhile, the encapsulation efficiency (EF) of 131I-PLGA-rhTSH nanoparticles was approximately 60%, and the radioactivity of a single nanoparticle was about 1.1×10-2 Bq. Meanwhile, the 131I-PLGA-rhTSH nanoparticles were selectively delivered into, gradually enriched and slowly downregulated in xenograft tumor after the administration of 131I-PLGA-rhTSH nanoparticles through tail vein in mouse tumor xenograft model. Thereafter, the tumor weight was significantly reduced after the administration of 131I-PLGA-rhTSH nanoparticles. Subsequently, the application of 131I-PLGA-rhTSH nanoparticles facilitated apoptosis and attenuated immobilization via inhibiting F-actin assembling of FTC-133 cells.ConclusionThe present study develops a suitable approach integrating 131I and rhTSH, and this strategy is a feasible regimen enhancing the effect of radioiodine ablation for the treatment of thyroid cancer

    Effect of Modification on the Fluid Diffusion Coefficient in Silica Nanochannels

    No full text
    The diffusion behavior of fluid water in nanochannels with hydroxylation of silica gel and silanization of different modified chain lengths was simulated by the equilibrium molecular dynamics method. The diffusion coefficient of fluid water was calculated by the Einstein method and the Green–Kubo method, so as to analyze the change rule between the modification degree of nanochannels and the diffusion coefficient of fluid water. The results showed that the diffusion coefficient of fluid water increased with the length of the modified chain. The average diffusion coefficient of fluid water in the hydroxylated nanochannels was 8.01% of the bulk water diffusion coefficient, and the diffusion coefficients of fluid water in the –(CH2)3CH3, –(CH2)7CH3, and –(CH2)11CH3 nanochannels were 44.10%, 49.72%, and 53.80% of the diffusion coefficients of bulk water, respectively. In the above four wall characteristic models, the diffusion coefficients in the z direction were smaller than those in the other directions. However, with an increase in the silylation degree, the increased self-diffusion coefficient due to the surface effect could basically offset the decreased self-diffusion coefficient owing to the scale effect. In the four nanochannels, when the local diffusion coefficient of fluid water was in the range of 8 Å close to the wall, Dz was greater than Dxy, and beyond the range of 8 Å of the wall, the Dz was smaller than Dxy

    Hierarchical Segmentation Method for Generating Road Intersections from Crowdsourced Trajectory Data

    No full text
    Maintaining the data freshness and completeness of road intersection information is the key task of urban road map production and updating. Compared to professional surveying methods, crowdsourced trajectory data provide a low-cost, wide-coverage and real-time data resource for road map construction. However, there may exist the problems of spatio-temporal heterogeneity and uneven density distribution in crowdsourced trajectory data. Hence, in light of road hierarchies, the paper proposes a hierarchical segmentation method to generate road intersections from crowdsourced trajectories. The proposed method firstly implements an adaptive density homogenization processing on raw trajectory data in order to decrease the uneven density discrepancy. Then, a hierarchical segmentation strategy is developed to extract multi-level road intersection elements from coarse scale to fine scale. Finally, the structural models of road intersections are delineated by an iterative piecewise fitting method. Experimental results show that the proposed method can accurately and completely extract road intersections of different shapes and scales, with an accuracy of about 87–90%. Particularly, the precision and recall of road intersection detection are obviously increased by about 7% and 20% by adaptive density homogenization, indicating the advantages of dealing with uneven trajectory data

    Comparing the prognostic impact of 131I or/and Artificial Liver Support System on liver function failure combined with hyperthyroidism

    No full text
    Objective: Hyperthyroidism, a prevalent endocrine disorder, can lead to complications such as liver failure due to the liver's essential role in thyroid hormone metabolism. The study aimed to elucidate the respective contributions of 131I or/and ALSS in managing hyperthyroidism alongside liver failure. Methods: A retrospective analysis was carried out on 74 patients diagnosed with severe liver dysfunction in the context of Graves' disease. Patients were categorized into three groups: Group A (n=34) received 131I treatment, group B (n=17) underwent 131I and ALSS treatment, and Group C (n=24) received ALSS treatment alone. Results: Throughout the treatment period, the liver function indexes in all groups exhibited a decline trend. The thyroid function of group A and B treated with 131I was significantly improved compared with that before treatment. There was no significant change in thyroid function in group C. After the correction of hyperthyroidism, significant improvements were observed in the liver function of individuals in group A and B, particularly with more noticeable amelioration compared to group C. After two months of treatment, the efficacy rates for the three groups were 79.41%, 82.35%, and 60.87% respectively. Mortality rates of the three groups were 5.88%,17.65% and 36%(p < 0.01). Group B, receiving both 131I and ALSS treatments, exhibited a lower mortality rate than group C. Conclusion: In cases of severe liver dysfunction accompanied by hyperthyroidism, prompt administration of 131I is recommended to alleviate the adverse effects of hyperthyroidism on liver function and facilitate a conducive environment for the recovery of liver functionality

    Imageological/Structural Study regarding the Improved Pharmacokinetics by <sup>68</sup>Ga-Labeled PEGylated PSMA Multimer in Prostate Cancer

    No full text
    PMSA (prostate-specific membrane antigen) is currently the most significant target for diagnosing and treating PCa (prostate cancer). Herein, we reported a series 68Ga/177Lu-labeled multimer PSMA tracer conjugating with PEG chain, including [68Ga]Ga-DOTA-(1P-PEG4), [68Ga]Ga-DOTA-(2P-PEG0), [68Ga]Ga-DOTA-(2P-PEG4), and [68Ga]Ga/[177Lu]Lu-DOTA-(2P-PEG4)2, which showed an advantage of a multivalent effect and PEGylation to achieve higher tumor accumulation and faster kidney clearance. To figure out how structural optimizations based on a PSMA multimer and PEGylation influence the probe’s tumor-targeting ability, biodistribution, and metabolism, we examined PSMA molecular probes’ affinities to PC-3 PIP (PSMA-highly-expressed PC-3 cell line), and conducted pharmacokinetics analysis, biodistribution detection, small animal PET/CT, and SPECT/CT imaging. The results showed that PEG4 and PSMA dimer optimizations enhanced the probes’ tumor-targeting ability in PC-3 PIP tumor-bearing mice models. Compared with the PSMA monomer, the PEGylated PSMA dimer reduced the elimination half-life in the blood and increased uptake in the tumor, and the biodistribution results were consistent with PET/CT imaging results. [68Ga]Ga-DOTA-(2P-PEG4)2 exhibited higher tumor-to-organ ratios. When labeled by lutetium-177, relatively high accumulation of DOTA-(2P-PEG4)2 was still detected in PC-3 PIP tumor-bearing mice models after 48 h, indicating its prolonged tumor retention time. Given the superiority in imaging, simple synthetic processes, and structural stability, DOTA-(2P-PEG4)2 is expected to be a promising tumor-targeting diagnostic molecular probe in future clinical practice
    corecore