2,386 research outputs found

    Before the Morning After

    Get PDF
    This paper presents a wearable biopatch prototype for body surface potential measurement. It combines three key technologies, including mixed-signal system on chip (SoC) technology, inkjet printing technology, and anisotropic conductive adhesive (ACA) bonding technology. An integral part of the biopatch is a low-power low-noise SoC. The SoC contains a tunable analog front end, a successive approximation register analog-to-digital converter, and a reconfigurable digital controller. The electrodes, interconnections, and interposer are implemented by inkjet-printing the silver ink precisely on a flexible substrate. The reliability of printed traces is evaluated by static bending tests. ACA is used to attach the SoC to the printed structures and form the flexible hybrid system. The biopatch prototype is light and thin with a physical size of 16 cm x 16 cm. Measurement results show that low-noise concurrent electrocardiogram signals from eight chest points have been successfully recorded using the implemented biopatch.QC 20130805. Updated from accepted to published.</p

    PSO-embedded adaptive Kriging surrogate model method for structural reliability analysis with small failure probability

    Full text link
    In the present study, a novel adaptive surrogate model method is proposed for the analysis of structural reliability with small failure probability. In order to address the problems with conventional adaptive Kriging surrogate model method based on candidate sample pool, the adaptive Kriging surrogate model method which integrates Particle Swarm Optimization algorithm (PSO) is put forward. In the course of implementation, the surrogate model is gradually improved through an iterative process and the high-value samples are selected to update the surrogate model through an optimization solution carried out by using PSO. Numerical examples are used to evaluate the computational performance of the proposed method, and a further discussion is conducted around the revision to the learning function. The results show that the introduction of PSO not only increases the possibility of obtaining high-value samples, but also significantly improves the solution accuracy of the adaptive Kriging surrogate model method for structural reliability analysis. Meanwhile, the proposed method overcomes the problem caused by the conventional candidate pool-based selection method through the optimization algorithm to determine high-value samples, achieving an excellent performance in dealing with the small failure probability. In addition, the proposed method is applicable to achieve a reasonable balance between solution accuracy and efficiency through the revised learning function which takes into account local neighborhood effects

    The extremal unicyclic graphs of the revised edge Szeged index with given diameter

    Full text link
    Let GG be a connected graph. The revised edge Szeged index of GG is defined as Sze∗(G)=∑e=uv∈E(G)(mu(e∣G)+m0(e∣G)2)(mv(e∣G)+m0(e∣G)2)Sz^{\ast}_{e}(G)=\sum\limits_{e=uv\in E(G)}(m_{u}(e|G)+\frac{m_{0}(e|G)}{2})(m_{v}(e|G)+\frac{m_{0}(e|G)}{2}), where mu(e∣G)m_{u}(e|G) (resp., mv(e∣G)m_{v}(e|G)) is the number of edges whose distance to vertex uu (resp., vv) is smaller than the distance to vertex vv (resp., uu), and m0(e∣G)m_{0}(e|G) is the number of edges equidistant from both ends of ee, respectively. In this paper, the graphs with minimum revised edge Szeged index among all the unicyclic graphs with given diameter are characterized.Comment: arXiv admin note: text overlap with arXiv:1805.0657

    Tree maps having chain movable fixed points

    Get PDF
    AbstractIn this paper we discuss some basic properties of chain reachable sets and chain equivalent sets of continuous maps. It is proved that if f:T→T is a tree map which has a chain movable fixed point v, and the chain equivalent set CE(v,f) is not contained in the set P(f) of periodic points of f, then there exists a positive integer p not greater than the number of points in the set End([CE(v,f)])−Pv(f) such that fp is turbulent, and the topological entropy h(f)⩾(log2)/p. This result generalizes the corresponding results given in Block and Coven (1986) [2], Guo et al. (2003) [6], Sun and Liu (2003) [10], Ye (2000) [11], Zhang and Zeng (2004) [12]. In addition, in this paper we also consider metric spaces which may not be trees but have open subsets U such that the closures U¯ are trees. Maps of such metric spaces which have chain movable fixed points are discussed

    Quantum Discord for Investigating Quantum Correlations without Entanglement in Solids

    Full text link
    Quantum systems unfold diversified correlations which have no classical counterparts. These quantum correlations have various different facets. Quantum entanglement, as the most well known measure of quantum correlations, plays essential roles in quantum information processing. However, it has recently been pointed out that quantum entanglement cannot describe all the nonclassicality in the correlations. Thus the study of quantum correlations in separable states attracts widely attentions. Herein, we experimentally investigate the quantum correlations of separable thermal states in terms of quantum discord. The sudden change of quantum discord is observed, which captures ambiguously the critical point associated with the behavior of Hamiltonian. Our results display the potential applications of quantum correlations in studying the fundamental properties of quantum system, such as quantum criticality of non-zero temperature.Comment: 4 pages, 4 figure
    • …
    corecore