28 research outputs found

    Detection of mismatch repair gene germline mutation carrier among Chinese population with colorectal cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hereditary nonpolyposis colorectal cancer (HNPCC) is an autosomal dominant syndrome. The National Cancer Institute (NCI) has recommended the Revised Bethesda guidelines for screening HNPCC. There has been a great deal of research on the value of these tests in other countries. However, literature about the Chinese population is scarce. Our objective is to detect and study microsatellite instability (MSI) and mismatch repair (MMR) gene germline mutation carriers among a Chinese population with colorectal cancer.</p> <p>Methods</p> <p>In 146 prospectively recruited consecutive patients with clinically proven colorectal cancer, MSI carriers were identified by analysis of tumor tissue using multiplex fluorescence polymerase chain reaction (PCR) using the NCI recommended panel and classified into microsatellite instability-low (MSI-L), microsatellite instability-high (MSI-H) and microsatellite stable (MSS) groups. Immunohistochemical staining for MSH2, MSH6 and MLH1 on tissue microarrays (TMAs) was performed, and methylation of the MLH1 promoter was analyzed by quantitative methylation specific PCR (MSP). Germline mutation analysis of blood samples was performed for MSH2, MSH6 and MLH1 genes.</p> <p>Results</p> <p>Thirty-four out of the 146 colorectal cancers (CRCs, 23.2%) were MSI, including 19 MSI-H CRCs and 15 MSI-L CRCS. Negative staining for MSH2 was found in 8 CRCs, negative staining for MSH6 was found in 6 CRCs. One MSI-H CRC was negative for both MSH6 and MSH2. Seventeen CRCs stained negatively for MLH1. MLH1 promoter methylation was determined in 34 MSI CRCs. Hypermethylation of the MLH1 promoter occurred in 14 (73.7%) out of 19 MSI-H CRCs and 5 (33.3%) out of 15 MSI-L CRCs. Among the 34 MSI carriers and one MSS CRC with MLH1 negative staining, 8 had a MMR gene germline mutation, which accounted for 23.5% of all MSI colorectal cancers and 5.5% of all the colorectal cancers. Five patients harbored MSH2 germline mutations, and three patients harbored MSH6 germline mutations. None of the patients had an MLH1 mutation. Mutations were commonly located in exon 7 and 12 of MSH2 and exon 5 of MSH6. Right colonic lesions and mucinous carcinoma were not common in MSI carriers.</p> <p>Conclusion</p> <p>Our data may imply that the characteristics of HNPCC in the Chinese population are probably different from those of Western countries. Application of NCI recommended criteria may not be effective enough to identify Chinese HNPCC families. Further studies are necessary to echo or refute our results so as to make the NCI recommendation more universally applicable.</p

    Object-Based Wetland Classification Using Multi-Feature Combination of Ultra-High Spatial Resolution Multispectral Images

    No full text
    The Unmanned Aerial Vehicle (UAV) and Google Earth (GE) RGB images have ultra-high spatial resolution. But it is difficult to get a high classification accuracy due to the poor spectral resolution. In this article, the object-based wetland classification is investigated using multi-feature combination of ultra-high spatial resolution multispectral images (MSI). A Gram-Schmidt (GS) transformation is used to fuze Sentinel-2A data with UAV and GE RGB images, respectively, in order to obtain the ultra-high spatial resolution MSI as data sources. Three different feature combination classification scenarios are constructed for fusion GE and UAV MSI, respectively, based on selected features. The object-based random forest (RF) algorithms with parameters (mtry and ntree) optimization are used to carry out finer wetland classification. Results show that the fusion GE and UAV MSI have good applicability in the finer wetland classification, especially the fusion UAV images, and integrating multi-source features could improve classification accuracy. Both data sources reach the highest accuracy in scenario3. The overall accuracy of fusion UAV image scenario3 is 94.31% (Kappa = 0.9353), and that of fusion GE image scenario3 is 87.37% (Kappa = 0.8528). The contribution of different features to wetland classification is obtained with spectral and vegetation indexes, texture, geometric and contextual features

    Identification and Characterization of Inhibitors of Bacterial Enoyl-Acyl Carrier Protein Reductase

    No full text
    Bacterial enoyl-acyl carrier protein reductase (ENR) catalyzes an essential step in fatty acid biosynthesis. ENR is an attractive target for narrow-spectrum antibacterial drug discovery because of its essential role in metabolism and its sequence conservation across many bacterial species. In addition, the bacterial ENR sequence and structural organization are distinctly different from those of mammalian fatty acid biosynthesis enzymes. High-throughput screening to identify inhibitors of Escherichia coli ENR yielded four structurally distinct classes of hits. Several members of one of these, the 2-(alkylthio)-4,6-diphenylpyridine-3-carbonitriles (“thiopyridines”), inhibited both purified ENR (50% inhibitory concentration [IC(50)] = 3 to 25 μM) and the growth of Staphylococcus aureus and Bacillus subtilis (MIC = 1 to 64 μg/ml). The effect on cell growth is due in part to inhibition of fatty acid biosynthesis as judged by inhibition of incorporation of [(14)C]acetate into fatty acids and by the increased sensitivity of cells that underexpress an ENR-encoding gene (four- to eightfold MIC shift). Synthesis of a variety of compounds in this chemical series revealed a correlation between IC(50) and MIC, and the results provided initial structure-activity relationships. Preliminary structure-activity relationships, potency on purified ENR, and activity on bacterial cells indicate that members of the thiopyridine chemical series are effective fatty acid biosynthesis inhibitors suitable for further antibacterial development

    Knockdown of FRAT1 expression by RNA interference inhibits human glioblastoma cell growth, migration and invasion.

    Get PDF
    BACKGROUND: FRAT1 positively regulates the Wnt/β-catenin signaling pathway by inhibiting GSK-3-mediated phosphorylation of β-catenin. It was originally characterized as a protein frequently rearranged in advanced T cell lymphoma, but has recently also been identified as a proto-oncogene involved in tumorigenesis. Our previous studies showed that FRAT1 was dramatically overexpressed in gliomas and its expression level was significantly increased along with clinicopathological grades. METHODS: In the current study, we used RT-PCR and Western blotting to assess the mRNA and protein levels of FRAT1 in three glioma cell lines. In addition, to evaluate its functional role in gliomas, we examined the effects of FRAT1 knockdown on proliferation, migration and invasion in vitro and tumor growth in vivo using glioblastoma U251 cells and RNAi. RESULTS: FRAT1 was highly expressed in all three glioma cell lines. RNAi-mediated down-regulation of endogenous FRAT1 in human glioblastoma U251 cells resulted in suppression of cell proliferation, arrest of cell cycle, inhibition of cell migration and invasion in vitro. Moreover, FRAT1 depletion significantly impaired tumor xenograft growth in nude mice. CONCLUSIONS: Our results highlight the potential role of FRAT1 in tumorigenesis and progression of glioblastoma. These findings provide a biological basis for FRAT1 as a potential molecular marker for improved pathological grading and as a novel candidate therapeutic target for glioblastoma management

    RNA interference reduced the expression of FRAT1 in U251 cells.

    No full text
    <p>Down-regulation of FRAT1 mRNA and protein expression in U251-S cells as compared to the parental U251, U251-NC, and U251-neo control cell lines was confirmed by RT-PCR and Western blot (WB). GAPDH was amplified as an internal control for the RT-PCR, and β-actin levels were examined as a loading control for the Western blot. 1: parental U251 cells; 2: U251-NC; 3: U251-neo; 4: U251-S.</p
    corecore