14 research outputs found

    Caractérisation de la transformation néoplasique de la peau par spectroscopies optiques sur fantôme de mélanome et carcinome épidermoïde murin photo-induit

    No full text
    L objectif de ce travail de recherche est d évaluer la capacité des spectroscopies optiques d autofluorescence et de réflectance diffuse à caractériser les différents stades de la transformation néoplasique de la peau et ainsi d aider au diagnostic des deux lésions de peau les plus létales : le mélanome malin et le carcinome épidermoïde. Dans l étude portant sur le mélanome, un objet-test ( fantôme ) a été développé pour modéliser différentes épaisseurs de mélanome (indice de Breslow). La spectroscopie de réflectance diffuse résolue spatialement (grâce à l utilisation de cinq fibres optiques réceptrices situées à cinq distances différentes de la fibre optique excitatrice) a montré sa capacité à discriminer (p<0,05) des indices de Breslow simulés grâce à des fantômes d épaisseur variant par pas d 1 mm. D autre part, des mesures de spectroscopie bimodale (combinant autofluorescence en multi-excitation et réflectance diffuse) ont été réalisées sur peau murine tout au long des sept mois de photocarcinogenèse. Des prélèvements cutanés ont permis d établir trois classes histologiques (en plus de la classe saine du groupe contrôle) : hyperplasie compensatoire, hyperplasie atypique et dysplasie. Puis la précision diagnostique a été évaluée par analyse statistique multivariée. Nos principaux résultats montrent que la bimodalité associant autofluorescence (excitation à 410 nm) et réflectance diffuse permet une amélioration de la spécificité de 9% comparées aux performances de chacune des modalités utilisée seule lors de la discrimination des trois types d hyperplasie. Des études cliniques doivent maintenant confirmer l intérêt de ces résultats.Autofluorescence and diffuse reflectance spectroscopies were studied as non-invasive tools to discriminate different stages of skin neoplastic transformation and thus to help diagnose the two most lethal skin lesions: cutaneous melanoma and squamous cell carcinoma. Concerning melanoma, skin phantoms were made to simulate several melanoma thicknesses (Breslow index). Spatially-resolved diffuse reflectance spectroscopy (using five collection optical fibers set at five different distances from the excitation optical fiber) allowed discrimination (p<0.05) of melanoma layers, the thickness of which was 1 mm different. Since diffuse reflectance spectroscopy has already shown good results in assessing malignancy of pigmented skin lesions, such a spectroscopy could be used as a complementary tool of cutaneous melanoma diagnosis. Using ultra-violet induced squamous cell carcinoma of mouse skin, bimodal spectra (multi-excitation fluorescence and diffuse reflectance) were acquired throughout the 7 month-carcinogenesis. Histological sampling followed spectral acquisition and three histological classes were determined by histo-pathological examination: compensatory hyperplasia, atypical hyperplasia and dysplasia. A fourth healthy class consisted in the skin sampled on mice that were never irradiated (control group). Multivariate statistical analysis of the spectral data set showed that combining autofluorescence (best results obtained with a 410 nm excitation) and diffuse reflectance resulted in a 9% increase of specificity when discriminating the three types of hyperplasia from one another compared to each modality used alone. Such results need to be confirmed through clinical trials on human patients.NANCY1-Bib. numérique (543959902) / SudocSudocFranceF

    Classification of ultra-violet irradiated mouse skin histological stages by bimodal spectroscopy (multiple excitation autofluorescence and diffuse reflectance

    No full text
    International audienceHistopathological analysis and in vivo optical spectroscopy were used to discriminate several histological stages of UV-irradiated mouse skin. At different times throughout the 30-week irradiation, autofluorescence (AF) and diffuse reflectance (DR) spectra were acquired in a bimodal approach. Then skin was sampled and processed to be classified, according to morphological criteria, into four histological categories: normal, and three types of hyperplasia (compensatory, atypical, and dysplastic). After extracting spectral characteristics, principal component analysis (data reduction) and the k-nearest neighbor classifying method were applied to compare diagnostic performances of monoexcitation AF (based on each of the seven excitation wavelengths: 360, 368, 390, 400, 410, 420, and 430 nm), multiexcitation AF (combining the seven excitation wavelengths), DR, and bimodal spectroscopies. Visible wavelengths are the most sensitive ones to discriminate compensatory from precancerous (atypical and dysplastic) states. Multiexcitation AF provides an average 6-percentage-point increased sensitivity compared to the best scores obtained with monoexcitation AF for all pairs of tissue categories. Bimodality results in a 4-percentage-point increase of specificity when discriminating the three types of hyperplasia. Thus, bimodal spectroscopy appears to be a promising tool to discriminate benign from precancerous stages; clinical investigations should be carried out to confirm these results

    Multimodality point spectroscopy : interests, development and application to in vivo diagnosis of bladder and skin cancers

    No full text
    International audienceCombining autofluorescence (AF) and Diffuse Reflectance (DR) spectroscopies is supposed to improve diagnosispsila accuracy of early stages of cancer (as well as precancerous stages) which is of great clinical importance. For the present study, we developed a bimodal instrumentation combining spatially resolved AF and DR spectroscopies, and evaluated its ability to distinguish between healthy, inflammatory and early stages of cancers in vivo. In order to get such tissue types, we used 2 animal models: a rat bladder orthotopic cancer model and a mice UV-irradiated skin model. The first study shows that combining AF and DR improves both sensitivity and specificity of the diagnosis compared to one modality used alone: Se = 67% (DR alone), 72% (AF alone) increases up to 78% when combining the two modalities. Preliminary results of the second study reveal that some spectroscopic criteria may help quantitative histological analysis in making the difference between acute and precancerous hyperplasia
    corecore