6 research outputs found

    Impact of food processing and detoxification treatments on mycotoxin contamination

    Get PDF

    Acrylamide reduction strategy in combination with deoxynivalenol mitigation in industrial biscuits production

    No full text
    Acrylamide is formed during baking in some frequently consumed food products. It is proven to be carcinogenic in rodents and a probable human carcinogen. Thus, the food industry is working to find solutions to minimize its formation during processing. To better understand the sources of its formation, the present study is aimed at investigating how acrylamide concentration may be influenced by bakery-making parameters within a parallel strategy of mycotoxin mitigation (focusing specifically on deoxynivalenol—DON) related to wholegrain and cocoa biscuit production. Among Fusarium toxins, DON is considered the most important contaminant in wheat and related bakery products, such as biscuits, due to its widespread occurrence. Exploiting the power of a Design of Experiments (DoE), several conditions were varied as mycotoxin contamination levels of the raw materials, recipe formulation, pH value of dough, and baking time/temperature; each selected treatment was varied within a defined range according to the technological requirements to obtain an appreciable product for consumers. Experiments were performed in a pilot-plant scale in order to simulate an industrial production and samples were extracted and analysed by HPLC-MS/MS system. Applying a baking temperature of 200 °C at the highest sugar dose, acrylamide increased its concentration, and in particular, levels ranged from 306 ± 16 ”g/Kg d.m. and 400 ± 27 ”g/Kg d.m. in biscuits made without and with the addition of cocoa, respectively. Conversely, using a baking temperature of 180 °C in the same conditions (pH, baking time, and sugar concentrations), acrylamide values remained below 125 ± 14 ”g/Kg d.m. and 156 ± 15 ”g/Kg d.m. in the two final products. The developed predictive model suggested how some parameters can concretely contribute to limit acrylamide formation in the final product, highlighting a significant role of pH value (correlated also to sodium bicarbonate raising agent), followed by baking time/temperature parameters. In particular, the increasing range of baking conditions influenced in a limited way the final acrylamide content within the parallel effective range of DON reduction. The study represents a concrete example of how the control and optimization of selected operative parameters may lead to multiple mitigation of specific natural/process contaminants in the final food products, though still remaining in the sensorial satisfactory range

    Investigating the in vitro catabolic fate of Enniatin B in a human gastrointestinal and colonic model

    No full text
    Enniatin B is an emerging mycotoxin known to present biological activity because of its ionophoric characteristics. This compound has demonstrated strong in vitro cytotoxicity against different cancer cells, also at low molecular concentrations. Its natural occurrence in food commodities and feed is highly reported world-wide, but few information is available about its stability in the human gastro-intestinal tract. The present work evaluates the catabolic fate of enniatin B upon in vitro simulated digestion and colonic fermentation. LC-MS target and untargeted analysis have been performed to quantify the extent of enniatin B degradation and the formation of catabolic products. The results obtained showed significant degradation of enniatin B (degradation rate 79 ± 5%) along the gastrointestinal tract and further degradation of residual enniatin B was observed during colonic fermentation after 24 h of incubation. Moreover, 5 catabolic metabolites of enniatin B were putatively identified after gastrointestinal digestion resulting from the oxidation and opening of the depsipeptide ring. As a final step, the pharmacokinetic properties of enniatin B degradation products were tested in silico revealing that some of them may be adsorbed at the gastrointestinal level more than the parent compound. Additionally, the smaller degradation products showed moderate blood-brain-barrier crossing

    Biosynthesis of beauvericin and enniatins invitro by wheat Fusarium species and natural grain contamination in an area of central Italy

    No full text
    © 2014 Elsevier Ltd. Contamination of wheat grain by beauvericin (BEA) and enniatins (ENs) is a global emerging mycotoxicological food problem. In this study, strains of Fusarium avenaceum (FA), Fusarium poae (FP), Fusarium equiseti and Fusarium sporotrichioides, all potential BEA and EN producers, isolated from 162 grain samples of durum and soft wheat harvested in 2009 and 2010 collected in an area of central Italy, were preliminarily screened for the presence of the esyn1 gene, encoding the multifunctional enzyme enniatin-synthetase for the detection of potential hexadepsipeptide-producing isolates. All positive isolates were tested for their ability to biosynthesize BEA and ENs invitro. In addition, all wheat samples were investigated for the natural presence of BEA and ENs (ENA, ENA1, ENB, ENB1). All FA and FP strains resulted to be positive for the presence of the esyn1 gene. All FA strains showed the ability to biosynthesize ENs invitro but not BEA. Conversely, all FP strains resulted to be BEA producers and some of them co-biosynthesized ENs. A remarkable presence of "emerging" mycotoxins was found in the grains, particularly ENs. Co-contamination by BEA and ENs also occurred. This study gives an important contribution to assess the risk posed by mycotoxigenic fungi and their mycotoxins in food
    corecore