165 research outputs found

    Topological Hochschild cohomology and generalized Morita equivalence

    Full text link
    We explore two constructions in homotopy category with algebraic precursors in the theory of noncommutative rings and homological algebra, namely the Hochschild cohomology of ring spectra and Morita theory. The present paper provides an extension of the algebraic theory to include the case when MM is not necessarily a progenerator. Our approach is complementary to recent work of Dwyer and Greenlees and of Schwede and Shipley. A central notion of noncommutative ring theory related to Morita equivalence is that of central separable or Azumaya algebras. For such an Azumaya algebra A, its Hochschild cohomology HH^*(A,A) is concentrated in degree 0 and is equal to the center of A. We introduce a notion of topological Azumaya algebra and show that in the case when the ground S-algebra R is an Eilenberg-Mac Lane spectrum of a commutative ring this notion specializes to classical Azumaya algebras. A canonical example of a topological Azumaya R-algebra is the endomorphism R-algebra F_R(M,M) of a finite cell R-module. We show that the spectrum of mod 2 topological K-theory KU/2 is a nontrivial topological Azumaya algebra over the 2-adic completion of the K-theory spectrum widehat{KU}_2. This leads to the determination of THH(KU/2,KU/2), the topological Hochschild cohomology of KU/2. As far as we know this is the first calculation of THH(A,A) for a noncommutative S-algebra A.Comment: Published by Algebraic and Geometric Topology at http://www.maths.warwick.ac.uk/agt/AGTVol4/agt-4-29.abs.htm

    Edge Label Inference in Generalized Stochastic Block Models: from Spectral Theory to Impossibility Results

    Get PDF
    The classical setting of community detection consists of networks exhibiting a clustered structure. To more accurately model real systems we consider a class of networks (i) whose edges may carry labels and (ii) which may lack a clustered structure. Specifically we assume that nodes possess latent attributes drawn from a general compact space and edges between two nodes are randomly generated and labeled according to some unknown distribution as a function of their latent attributes. Our goal is then to infer the edge label distributions from a partially observed network. We propose a computationally efficient spectral algorithm and show it allows for asymptotically correct inference when the average node degree could be as low as logarithmic in the total number of nodes. Conversely, if the average node degree is below a specific constant threshold, we show that no algorithm can achieve better inference than guessing without using the observations. As a byproduct of our analysis, we show that our model provides a general procedure to construct random graph models with a spectrum asymptotic to a pre-specified eigenvalue distribution such as a power-law distribution.Comment: 17 page

    BGWM as Second Constituent of Complex Matrix Model

    Full text link
    Earlier we explained that partition functions of various matrix models can be constructed from that of the cubic Kontsevich model, which, therefore, becomes a basic elementary building block in "M-theory" of matrix models. However, the less topical complex matrix model appeared to be an exception: its decomposition involved not only the Kontsevich tau-function but also another constituent, which we now identify as the Brezin-Gross-Witten (BGW) partition function. The BGW tau-function can be represented either as a generating function of all unitary-matrix integrals or as a Kontsevich-Penner model with potential 1/X (instead of X^3 in the cubic Kontsevich model).Comment: 42 page
    corecore