The classical setting of community detection consists of networks exhibiting
a clustered structure. To more accurately model real systems we consider a
class of networks (i) whose edges may carry labels and (ii) which may lack a
clustered structure. Specifically we assume that nodes possess latent
attributes drawn from a general compact space and edges between two nodes are
randomly generated and labeled according to some unknown distribution as a
function of their latent attributes. Our goal is then to infer the edge label
distributions from a partially observed network. We propose a computationally
efficient spectral algorithm and show it allows for asymptotically correct
inference when the average node degree could be as low as logarithmic in the
total number of nodes. Conversely, if the average node degree is below a
specific constant threshold, we show that no algorithm can achieve better
inference than guessing without using the observations. As a byproduct of our
analysis, we show that our model provides a general procedure to construct
random graph models with a spectrum asymptotic to a pre-specified eigenvalue
distribution such as a power-law distribution.Comment: 17 page