8 research outputs found
Genome adaptation to chemical stress: clues from comparative transcriptomics in Saccharomyces cerevisiae and Candida glabrata
Comparative transcriptomics of Saccharomyces cerevisiae and Candida glabrata revealed a remarkable conservation of response to drug-induced stress, despite underlying differences in the regulatory networks
PockDrug-Server : a new web server for predicting pocket druggability on holo and apo proteins
Predicting protein pocket's ability to bind drug-like molecules with high affinity, i.e. druggability, is of major interest in the target identification phase of drug discovery. Therefore, pocket druggability investigations represent a key step of compound clinical progression projects. Currently computational druggability prediction models are attached to one unique pocket estimation method despite pocket estimation uncertainties. In this paper, we propose 'PockDrug-Server' to predict pocket druggability, efficient on both (i) estimated pockets guided by the ligand proximity (extracted by proximity to a ligand from a holo protein structure) and (ii) estimated pockets based solely on protein structure information (based on amino atoms that form the surface of potential binding cavities). PockDrug-Server provides consistent druggability results using different pocket estimation methods. It is robust with respect to pocket boundary and estimation uncertainties, thus efficient using apo pockets that are challenging to estimate. It clearly distinguishes druggable from less druggable pockets using different estimation methods and outperformed recent druggability models for apo pockets. It can be carried out from one or a set of apo/holo proteins using different pocket estimation methods proposed by our web server or from any pocket previously estimated by the user. PockDrug-Server is publicly available at: http://pockdrug.rpbs.univ-paris-diderot.fr.Peer reviewe
SA-Mot: a web server for the identification of motifs of interest extracted from protein loops
The detection of functional motifs is an important step for the determination of protein functions. We present here a new web server SA-Mot (Structural Alphabet Motif) for the extraction and location of structural motifs of interest from protein loops. Contrary to other methods, SA-Mot does not focus only on functional motifs, but it extracts recurrent and conserved structural motifs involved in structural redundancy of loops. SA-Mot uses the structural word notion to extract all structural motifs from uni-dimensional sequences corresponding to loop structures. Then, SA-Mot provides a description of these structural motifs using statistics computed in the loop data set and in SCOP superfamily, sequence and structural parameters. SA-Mot results correspond to an interactive table listing all structural motifs extracted from a target structure and their associated descriptors. Using this information, the users can easily locate loop regions that are important for the protein folding and function. The SA-Mot web server is available at http://sa-mot.mti.univ-paris-diderot.fr
Spatio-Temporal Dynamics of Yeast Mitochondrial Biogenesis: Transcriptional and Post-Transcriptional mRNA Oscillatory Modules
Examples of metabolic rhythms have recently emerged from studies of budding
yeast. High density microarray analyses have produced a remarkably detailed
picture of cycling gene expression that could be clustered according to
metabolic functions. We developed a model-based approach for the decomposition
of expression to analyze these data and to identify functional modules which,
expressed sequentially and periodically, contribute to the complex and intricate
mitochondrial architecture. This approach revealed that mitochondrial
spatio-temporal modules are expressed during periodic spikes and specific
cellular localizations, which cover the entire oscillatory period. For instance,
assembly factors (32 genes) and translation regulators (47 genes) are expressed
earlier than the components of the amino-acid synthesis pathways (31 genes). In
addition, we could correlate the expression modules identified with particular
post-transcriptional properties. Thus, mRNAs of modules expressed
“early” are mostly translated in the vicinity of
mitochondria under the control of the Puf3p mRNA-binding protein. This last
spatio-temporal module concerns mostly mRNAs coding for basic elements of
mitochondrial construction: assembly and regulatory factors. Prediction that
unknown genes from this module code for important elements of mitochondrial
biogenesis is supported by experimental evidence. More generally, these
observations underscore the importance of post-transcriptional processes in
mitochondrial biogenesis, highlighting close connections between nuclear
transcription and cytoplasmic site-specific translation
Molecular Dynamics Simulations of Influenza A Virus NS1 Reveal a Remarkably Stable RNA-Binding Domain Harboring Promising Druggable Pockets
International audienceThe non-structural protein NS1 of influenza A viruses is considered to be the major antagonist of the interferon system and antiviral defenses of the cell. It could therefore represent a suitable target for novel antiviral strategies. As a first step towards the identification of small compounds targeting NS1, we here investigated the druggable potential of its RNA-binding domain since this domain is essential to the biological activities of NS1. We explored the flexibility of the full-length protein by running molecular dynamics simulations on one of its published crystal structures. While the RNA-binding domain structure was remarkably stable along the simulations, we identified a flexible site at the two extremities of the "groove" that is delimited by the antiparallel α-helices that make up its RNA-binding interface. This groove region is able to form potential binding pockets, which, in 60% of the conformations, meet the druggability criteria. We characterized these pockets and identified the residues that contribute to their druggability. All the residues involved in the druggable pockets are essential at the same time to the stability of the RNA-binding domain and to the biological activities of NS1. They are also strictly conserved across the large sequence diversity of NS1, emphasizing the robustness of this search towards the identification of broadly active NS1-targeting compounds