353 research outputs found
The Promise and Perils of CNS Drug Delivery: A Video Debate
Neurodegenerative and infectious disorders related to host genetics, aging, and environment are rapidly increasing. Drugs, vaccines, or regenerative proteins offer “real” possibilities for positively affecting disease outcomes but are limited by access across the blood-brain barrier. New developments in nanomedicine and cell based drug delivery are becoming available. These discoveries can lead to improved neurological disease outcomes. Such obstacles include the toxicities inherent in the delivery systems de novo such as immuno- and neurological dysfunctions and perturbations of blood-brain barrier function. This debate by leading experts in the field highlights the promise and perils of CNS drug delivery. Click on Supplemental HTML to watch the streaming video
Viewing Ageing Eyes: Diverse Sites of Amyloid Beta Accumulation in the Ageing Mouse Retina and the Up-Regulation of Macrophages
Amyloid beta (Aβ) accumulates in the ageing central nervous system and is associated with a number of age-related diseases, including age-related macular degeneration (AMD) in the eye. AMD is characterised by accumulation of extracellular deposits called drusen in which Aβ is a key constituent. Aβ activates the complement cascade and its deposition is associated with activated macrophages. So far, little is known about the quantitative measurements of Aβ accumulation and definitions of its relative sites of ocular deposition in the normal ageing mouse. METHODOLOGY/PRINCIPAL FINDINGS: We have traced Aβ accumulation quantitatively in the ageing mouse retina using immunohistochemistry and Western blot analysis. We reveal that it is not only deposited at Bruch's membrane and along blood vessels, but unexpectedly, it also coats photoreceptor outer segments. While Aβ is present at all sites of deposition from 3 months of age, it increases markedly from 6 months onward. Progressive accumulation of deposits on outer segments was confirmed with scanning electron microscopy, revealing age-related changes in their morphology. Such progress of accumulation of Aβ on photoreceptor outer segments with age was also confirmed in human retinae using immunohistochemistry. We also chart the macrophage response to increases in Aβ showing up-regulation in their numbers using both confocal laser imaging of the eye in vivo followed by in vitro immunostaining. With age macrophages become bloated with cellular debris including Aβ, however, their increasing numbers fail to stop Aβ accumulation. CONCLUSIONS: Increasing Aβ deposition in blood vessels and Bruch's membrane will impact upon retinal perfusion and clearance of cellular waste products from the outer retina, a region of very high metabolic activity. This accumulation of Aβ may contribute to the 30% reduction of photoreceptors found throughout life and the shortening of those that remain. The coating of Aβ on outer segments may also have an impact upon visual function with ag
Fusobacterium necrophorum causando endocardite infecciosa e abscesso hepático e esplênico
A 25-year-old male without prior co-morbidities was admitted to hospital with Fusobacterium necrophorum bacteremia, where he was found to have liver and splenic abscesses. Further evaluation with echocardiography revealed a bicuspid aortic valve with severe insufficiency and a 1.68 x 0.86 cm vegetation. The patient required abscess drainage, intravenous antimicrobial therapy and aortic valve replacement. Complete resolution of the infection was achieved after valve replacement and a prolonged course of intravenous antimicrobial therapy. A brief analysis of the patient's clinical course and review of the literature is presented.Homem de 25 anos de idade, sem antecedentes mórbidos foi admitido ao hospital com bacteremia por Fusobacterium necrophorum e abscessos no fígado e no baço. Avaliação posterior com ecografia revelou válvula aórtica bicúspide com insuficiência severa e vegetação de 1,68 x 0,86 cm. Foi feita drenagem dos abscessos, terapia antimicrobiana intravenosa e substituição da válvula aórtica. Resolução completa da infecção foi conseguida após substituição valvular e curso prolongado de terapêutica intravenosa antimicrobiana. É apresentada breve análise do curso clínico do paciente e revisão da literatura
17-AAG Induces Cytoplasmic α-Synuclein Aggregate Clearance by Induction of Autophagy
The accumulation and aggregation of α-synuclein in nerve cells and glia are characteristic features of a number of neurodegenerative diseases termed synucleinopathies. α-Synuclein is a highly soluble protein which in a nucleation dependent process is capable of self-aggregation. The causes underlying aggregate formation are not yet understood, impairment of the proteolytic degradation systems might be involved.Cl the aggregate clearing effects of 17-AAG were abolished and α-synuclein deposits were enlarged. Analysis of LC3-II immunoreactivity, which is an indicator of autophagosome formation, further revealed that 17-AAG led to the recruitment of LC3-II and to the formation of LC3 positive puncta. This effect was also observed in cultured oligodendrocytes derived from the brains of newborn rats. Inhibition of macroautophagy by 3-methyladenine prevented 17-AAG induced occurrence of LC3 positive puncta as well as the removal of α-synuclein aggregates in OLN-A53T cells.Our data demonstrate for the first time that 17-AAG not only causes the upregulation of heat shock proteins, but also is an effective inducer of the autophagic pathway by which α-synuclein can be removed. Hence geldanamycin derivatives may provide a means to modulate autophagy in neural cells, thereby ameliorating pathogenic aggregate formation and protecting the cells during disease and aging
Immune Activations and Viral Tissue Compartmentalization During Progressive HIV-1 Infection of Humanized Mice
Human immunodeficiency virus type one (HIV-1) tissue compartments are established soon after viral infection. However, the timing in which virus gains a permanent foothold in tissue and the cellular factors that control early viral-immune events are incompletely understood. These are critical events in studies of HIV-1 pathogenesis and in the development of viral reservoirs after antiretroviral therapy. Moreover, factors affecting the permanence of viral-tissue interactions underlie barriers designed to eliminate HIV-1 infection. To this end we investigated the temporal and spatial viral and host factors during HIV-1 seeding of tissue compartments. Two humanized NOD.Cg-Prkdcscid IL2rgtm1Wjl/SzJ mouse models were employed. In the first, immune deficient mice were reconstituted with human CD34+ cord blood hematopoietic stem cells (HSC) (hu-HSC) and in the second mice were transplanted with adult mature human peripheral lymphocytes (hu-PBL). Both, in measure, reflect relationships between immune activation and viral infection as seen in an infected human host. Following humanization both mice models were infected with HIV-1ADA at 104 50% tissue culture infective doses. Viral nucleic acids and protein and immune cell profiles were assayed in brain, lung, spleen, liver, kidney, lymph nodes, bone marrow, and gut from 3 to 42 days. Peripheral CD4+ T cell loss began at 3 days together with detection of HIV-1 RNA in both mouse models after initiation of HIV-1 infection. HIV-1 was observed in all tested tissues at days 3 and 14 in hu- PBL and HSC mice, respectively. Immune impairment was most prominent in hu-PBL mice. T cell maturation and inflammation factors were linked directly to viral tissue seeding in both mouse models. We conclude that early viral tissue compartmentalization provides a roadmap for investigations into HIV-1 elimination
Synthesis and Characterization of a Long-Acting Tenofovir ProTide Nanoformulation
Antiretroviral therapy (ART) has significantly improved the quality of life of Human Immunodeficiency Virus (HIV) patients; but adverse side effects and poor patient compliance to lifelong daily pills remain major challenges. To this end, the need for long acting (LA) therapies that can improve treatment adherence, positively affect drug resistance patterns in addition to limiting drug toxicities cannot be overstated. Tenofovir alafenamide (TAF), a nucleotide reverse transcriptase inhibitor of HIV infection and prodrug of tenofovir (TFV), is characterized by potent antiretroviral activities and high genetic barrier to viral resistance making it a suitable candidate for long-acting antiretroviral therapy. However, the inherent physicochemical features of TAF that includes high water solubility and susceptibility to degradation in aqueous buffers has limited its transformation into long-acting sustained release formulations. With these limitations in mind, this work sought to produce a stable TFV prodrug that would facilitate development of a long-acting formulation without compromising on TAF’s antiretroviral activity and safety profile. A lipophilic and hydrophobic prodrug of TFV (M1TFV) was therefore developed through chemical synthesis making it possible to formulate the drug as a stable aqueous nanosuspension to improve upon drug dissolution. The aqueous poloxamer stabilized TFV prodrug nanosuspension (NM1TFV) was characterized for physicochemical properties, chemical stability, cellular drug uptake and retention. The average particle size of the nanoparticles was 220-270 nm with a polydispersity index ofhttps://digitalcommons.unmc.edu/surp2021/1002/thumbnail.jp
Multidimensional protein fractionation using ProteomeLab PF 2D™ for profiling amyotrophic lateral sclerosis immunity: A preliminary report
Background: The ProteomeLab™ PF 2D platform is a relatively new approach to global protein profiling. Herein, it was used for investigation of plasma proteome changes in amyotrophic lateral sclerosis (ALS) patients before and during immunization with glatiramer acetate (GA) in a clinical trial. Results: The experimental design included immunoaffinity depletion of 12 most abundant proteins from plasma samples with the ProteomeLab™ IgY-12 LC10 column kit as first dimension separation, also referred to as immuno-partitioning. Second and third dimension separations of the enriched proteome were performed on the PF 2D platform utilizing 2D isoelectric focusing and RP-HPLC with the resulting fractions collected for analysis. 1D gel electrophoresis was added as a fourth dimension when sufficient protein was available. Protein identification from collected fractions was performed using nano-LC-MS/MS approach. Analysis of differences in the resulting two-dimensional maps of fractions obtained from the PF 2D and the ability to identify proteins from these fractions allowed sensitivity threshold measurements. Masked proteins in the PF 2D fractions are discussed. Conclusion: We offer some insight into the strengths and limitations of this emerging proteomic platform
Adaptive Vaccination Strategies to Mitigate Pandemic Influenza: Mexico as a Case Study
Background
We explore vaccination strategies against pandemic influenza in Mexico using an age-structured transmission model calibrated against local epidemiological data from the Spring 2009 A(H1N1) pandemic. Methods and Findings
In the context of limited vaccine supplies, we evaluate age-targeted allocation strategies that either prioritize youngest children and persons over 65 years of age, as for seasonal influenza, or adaptively prioritize age groups based on the age patterns of hospitalization and death monitored in real-time during the early stages of the pandemic. Overall the adaptive vaccination strategy outperformed the seasonal influenza vaccination allocation strategy for a wide range of disease and vaccine coverage parameters. Conclusions
This modeling approach could inform policies for Mexico and other countries with similar demographic features and vaccine resources issues, with regard to the mitigation of the S-OIV pandemic. We also discuss logistical issues associated with the implementation of adaptive vaccination strategies in the context of past and future influenza pandemics
- …