19,555 research outputs found

    Breeding for quantitative variables. Part 4: Breeding for nutritional quality traits

    Get PDF
    Yusuf Genc, Julia M. Humphries, Graham H. Lyons and Robin D. Grahamhttp://www.fao.org/docrep/012/i1070e/i1070e00.ht

    Universal localisations and tilting modules for finite dimensional algebras

    Full text link
    We study universal localisations, in the sense of Cohn and Schofield, for finite dimensional algebras and classify them by certain subcategories of our initial module category. A complete classification is presented in the hereditary case as well as for Nakayama algebras and local algebras. Furthermore, for hereditary algebras, we establish a correspondence between finite dimensional universal localisations and finitely generated support tilting modules. In the Nakayama case, we get a similar result using τ\tau-tilting modules, which were recently introduced by Adachi, Iyama and Reiten

    GAN-based Virtual Re-Staining: A Promising Solution for Whole Slide Image Analysis

    Full text link
    Histopathological cancer diagnosis is based on visual examination of stained tissue slides. Hematoxylin and eosin (H\&E) is a standard stain routinely employed worldwide. It is easy to acquire and cost effective, but cells and tissue components show low-contrast with varying tones of dark blue and pink, which makes difficult visual assessments, digital image analysis, and quantifications. These limitations can be overcome by IHC staining of target proteins of the tissue slide. IHC provides a selective, high-contrast imaging of cells and tissue components, but their use is largely limited by a significantly more complex laboratory processing and high cost. We proposed a conditional CycleGAN (cCGAN) network to transform the H\&E stained images into IHC stained images, facilitating virtual IHC staining on the same slide. This data-driven method requires only a limited amount of labelled data but will generate pixel level segmentation results. The proposed cCGAN model improves the original network \cite{zhu_unpaired_2017} by adding category conditions and introducing two structural loss functions, which realize a multi-subdomain translation and improve the translation accuracy as well. % need to give reasons here. Experiments demonstrate that the proposed model outperforms the original method in unpaired image translation with multi-subdomains. We also explore the potential of unpaired images to image translation method applied on other histology images related tasks with different staining techniques

    Using Photorealistic Face Synthesis and Domain Adaptation to Improve Facial Expression Analysis

    Full text link
    Cross-domain synthesizing realistic faces to learn deep models has attracted increasing attention for facial expression analysis as it helps to improve the performance of expression recognition accuracy despite having small number of real training images. However, learning from synthetic face images can be problematic due to the distribution discrepancy between low-quality synthetic images and real face images and may not achieve the desired performance when the learned model applies to real world scenarios. To this end, we propose a new attribute guided face image synthesis to perform a translation between multiple image domains using a single model. In addition, we adopt the proposed model to learn from synthetic faces by matching the feature distributions between different domains while preserving each domain's characteristics. We evaluate the effectiveness of the proposed approach on several face datasets on generating realistic face images. We demonstrate that the expression recognition performance can be enhanced by benefiting from our face synthesis model. Moreover, we also conduct experiments on a near-infrared dataset containing facial expression videos of drivers to assess the performance using in-the-wild data for driver emotion recognition.Comment: 8 pages, 8 figures, 5 tables, accepted by FG 2019. arXiv admin note: substantial text overlap with arXiv:1905.0028

    Learn to synthesize and synthesize to learn

    Get PDF
    Attribute guided face image synthesis aims to manipulate attributes on a face image. Most existing methods for image-to-image translation can either perform a fixed translation between any two image domains using a single attribute or require training data with the attributes of interest for each subject. Therefore, these methods could only train one specific model for each pair of image domains, which limits their ability in dealing with more than two domains. Another disadvantage of these methods is that they often suffer from the common problem of mode collapse that degrades the quality of the generated images. To overcome these shortcomings, we propose attribute guided face image generation method using a single model, which is capable to synthesize multiple photo-realistic face images conditioned on the attributes of interest. In addition, we adopt the proposed model to increase the realism of the simulated face images while preserving the face characteristics. Compared to existing models, synthetic face images generated by our method present a good photorealistic quality on several face datasets. Finally, we demonstrate that generated facial images can be used for synthetic data augmentation, and improve the performance of the classifier used for facial expression recognition.Comment: Accepted to Computer Vision and Image Understanding (CVIU
    • …
    corecore