38 research outputs found

    Antioxidant activity of caffeic acid against Iron-induced Free Radical Generation : a chemical approach

    Get PDF
    Caffeic acid (CA) is a phenolic compound widely found in coffee beans with known beneficial effects in vivo. Many studies showed that CA has anti inflammatory, anti-mutagenic, antibacterial and anti carcinogenic properties, which could be linked to its antioxidant activity. Taking in consideration the reported in vitro antioxidant mechanism of other polyphenols, our working hypothesis was that the CA antioxidant activity could be related to its metal-chelating property. With that in mind, we sought to investigate the chemical antioxidant mechanism of CA against in vitro iron-induced oxidative damage under different assay conditions. CA was able to prevent hydroxyl radical formation promoted by the classical Fenton reaction, as determined by 2-deoxyribose (2-DR) oxidative degradation and DMPO hydroxylation. In addition to its ability to prevent hydroxyl radical formation, CA had a great inhibition of membrane lipid peroxidation. In the lipid peroxidation assays CA acted as both metalchelator and as hydrogen donor, preventing the deleterious action promoted by lipid-derived peroxyl and alkoxyl radicals. Our results indicate that the observed antioxidant effects were mostly due to the formation of iron-CA complexes, which are able to prevent 2-DR oxidation and DMPO hydroxylation. Noteworthy, the formation of iron-CA complexes and prevention of oxidative damage was directly related to the pH of the medium, showing better antioxidant activity at higher pH values. Moreover, in the presence of lipid membranes the antioxidant potency of CA was much higher, indicating its enhanced effectiveness in a hydrophobic environment. Overall, our results show that CA acts as an antioxidant through an iron chelating mechanism, preventing the formation of free hydroxyl radicals and, therefore, inhibiting Fenton-induced oxidative damage. The chemical properties of CA described here —in association with its reported signaling effects—could be an explanation to its beneficial effects observed in vivo

    Behavior of the thermal diffusivity of native and oxidized human low-density lipoprotein solutions studied by the Z-scan technique

    Get PDF
    Modifications in low-density lipoprotein (LDL) have emerged as a major pathogenic factor of atherosclerosis, which is the main cause of morbidity and mortality in the western world. Measurements of the heat diffusivity of human LDL solutions in their native and in vitro oxidized states are presented by using the Z-Scan (ZS) technique. Other complementary techniques were used to obtain the physical parameters necessary to interpret the optical results, e. g., pycnometry, refractometry, calorimetry, and spectrophotometry, and to understand the oxidation phase of LDL particles. To determine the sample's thermal diffusivity using the thermal lens model, an iterative one-parameter fitting method is proposed which takes into account several characteristic ZS time-dependent and the position-dependent transmittance measurements. Results show that the thermal diffusivity increases as a function of the LDL oxidation degree, which can be explained by the increase of the hydroperoxides production due to the oxidation process. The oxidation products go from one LDL to another, disseminating the oxidation process and caring the heat across the sample. This phenomenon leads to a quick thermal homogenization of the sample, avoiding the formation of the thermal lens in highly oxidized LDL solutions. (C) 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.JBO.17.10.105003]National Counsel for Scientific and Technological Development (CNPq)National Counsel for Scientific and Technological Development (CNPq)Sao Paulo Research Foundation (FAPESP)Sao Paulo Research Foundation (FAPESP)National Institute of Science and Technology of Complex Fluid (INCTFCx)National Institute of Science and Technology of Complex Fluid (INCT-FCx)Redoxoma (INCT-Redoxoma)Redoxoma (INCTRedoxoma

    Plasma Retinol Concentrations and Dietary Intakes of Mother-Infant Sets in Singleton versus Twin Pregnancy

    Get PDF
    Vitamin A (retinol) is essential for normal fetal development, but the recommendation for maternal dietary intake (Retinol Activity Equivalent, RAE) does not differ for singleton vs. twin pregnancy, despite the limited evaluation of retinol status. Therefore, this study aimed to evaluate plasma retinol concentrations and deficiency status in mother-infant sets from singleton vs. twin pregnancies as well as maternal RAE intake. A total of 21 mother-infant sets were included (14 singleton, 7 twin). The HPLC and LC-MS/HS evaluated the plasma retinol concentration, and data were analyzed using the Mann-Whitney U test. Plasma retinol was significantly lower in twin vs. singleton pregnancies in both maternal (192.2 vs. 312.1 vs. mcg/L, p = 0.002) and umbilical cord (UC) samples (102.5 vs. 154.4 vs. mcg/L, p = 0.002). The prevalence of serum-defined vitamin A deficiency (VAD) \u3c200.6 mcg/L was higher in twins vs. singletons for both maternal (57% vs. 7%, p = 0.031) and UC samples (100% vs. 0%, p \u3c 0.001), despite a similar RAE intake (2178 vs. 1862 mcg/day, p = 0.603). Twin pregnancies demonstrated a higher likelihood of vitamin A deficiency in mothers, with an odds ratio of 17.3 (95% CI: 1.4 to 216.6). This study suggests twin pregnancy may be associated with VAD deficiency. Further research is needed to determine optimal maternal dietary recommendations during twin gestation

    Ubiquitous Aberration in Cholesterol Metabolism Across Pancreatic Ductal Adenocarcinoma

    Get PDF
    Pancreatic cancer (PC) is characterized by metabolic deregulations that often manifest as deviations in metabolite levels and aberrations in their corresponding metabolic genes across the clinical specimens and preclinical PC models. Cholesterol is one of the critical metabolites supporting PC, synthesized or acquired by PC cells. Nevertheless, the significance of the de novo cholesterol synthesis pathway has been controversial in PC, indicating the need to reassess this pathway in PC. We utilized preclinical models and clinical specimens of PC patients and cell lines and utilized mass spectrometry-based sterol analysis. Further, we also performed in silico analysis to corroborate the significance of de novo cholesterol synthesis pathway in PC. Our results demonstrated alteration in free sterol levels, including free cholesterol, across in vitro, in vivo, and clinical specimens of PC. Especially, our sterol analyses established consistent alterations in free cholesterol across the different PC models. Overall, this study demonstrates the significance and consistency in deviation of cholesterol synthesis pathway in PC while showing the aberrations in sterol metabolite intermediates and the related genes using preclinical models, in silico platforms, and the clinical specimens

    Retinol and Pro-Vitamin A Carotenoid Nutritional Status during Pregnancy Is Associated with Newborn Hearing Screen Results

    Get PDF
    The prenatal period is critical for auditory development; thus, prenatal influences on auditory development may significantly impact long-term hearing ability. While previous studies identified a protective effect of carotenoids on adult hearing, the impact of these nutrients on hearing outcomes in neonates is not well understood. The purpose of this study is to investigate the relationship between maternal and umbilical cord plasma retinol and carotenoid concentrations and abnormal newborn hearing screen (NHS) results. Mother-infant dyads (n = 546) were enrolled at delivery. Plasma samples were analyzed using HPLC and LC-MS/MS. NHS results were obtained from medical records. Statistical analysis utilized Mann-Whitney U tests and logistic regression models, with p ≤ 0.05 considered statistically significant. Abnormal NHS results were observed in 8.5% of infants. Higher median cord retinol (187.4 vs. 162.2 μg/L, p = 0.01), maternal trans-β-carotene (206.1 vs. 149.4 μg/L, p = 0.02), maternal cis-β-carotene (15.9 vs. 11.2 μg/L, p = 0.02), and cord trans-β-carotene (15.5 vs. 8.0 μg/L, p = 0.04) were associated with abnormal NHS. Significant associations between natural log-transformed retinol and β-carotene concentrations and abnormal NHS results remained after adjustment for smoking status, maternal age, and corrected gestational age. Further studies should investigate if congenital metabolic deficiencies, pesticide contamination of carotenoid-rich foods, maternal hypothyroidism, or other variables mediate this relationshi

    Mecanismos da ação antioxidante dos ácidos caféico e tânico em sistemas contendo íons ferro

    Get PDF
    Dissertação (mestrado)—Universidade de Brasília, Instituto de Química, 2009.Este trabalho foi dividido em três capítulos distintos. No primeiro capítulo, foi feita uma reavaliação da metodologia da degradação oxidativa da 2-desoxirribose (2-DR) em sistemas geradores de radicais livres mediados por íons ferrosos. Este ensaio é amplamente utilizado para avaliar a atividade pró/antioxidante de moléculas isoladas ou extratos vegetais. Entretanto, verificou-se que o Fe(III) produto das reações de Fenton e autoxidação do Fe(II) reage com a 2-DR levando à formação de malonildialdeído (MDA). Os resultados mostram que a reação entre o Fe(III) e a 2-DR não é influenciada pela presença de antioxidantes, pelo tipo de tampão utilizado ou pela presença de quelantes de ferro. A reação do Fe(III) com a 2-DR consiste em um artefato metodológico, que não descontado propriamente (por meio de um novo branco proposto neste capítulo), pode levar à subestimação da atividade antioxidante ou a incorreta interpretação dos mecanismos de ação dos compostos estudados. Nos capítulos 2 e 3, foram estudados os efeitos do ácido caféico (AC) nas reações de Fenton e da autoxidação do Fe(II), respectivamente. Os resultados foram comparados com o polifenol ácido tânico (AT), composto bastante estudado em nosso laboratório e com conhecida atividade antioxidante. Em ambas as reações, o AC apresentou atividade antioxidante na metodologia da degradação oxidativa da 2-DR, na hidroxilação do DMPO (somente na reação Fenton) e na peroxidação lipídica em fígado de rato. A proteção conferida pelo AC foi diretamente proporcional à sua concentração e inversamente proporcional à concentração de ferro. O efeito do AC em concentrações micromolares sugere que o seu mecanismo de ação antioxidante seja do tipo quelante, ao formar um complexo 1:2 Fe(II):AC que inibe a oxidação proporcionada pelo radical hidroxil. Além disso, o AC apresentou uma componente sequestradora de radicais livres, o que foi verificado por meio da redução do radical ABTS e pelo prolongamento da fase lag da peroxidação lipídica. Tanto o AC como o AT aceleram o consumo de oxigênio pela reação de autoxidação do Fe(II) e foram capazes de reduzir Fe(III) a Fe(II) por uma transferência eletrônica de esfera interna. ________________________________________________________________________________________ ABSTRACTThe present work was divided in three distinct chapters. In the first chapter, we performed a reevaluation of the 2-deoxyribose (2-DR) degradation assay for metal-mediated free radical formation.This assay is widely employed to evaluate the pro/antioxidant activity of pure compounds or plant extracts. However, we observed that Fe(III) a product of Fenton and Fe(II) autoxidation reactions reacts with 2-DR generating greats amounts of malondialdehyde (MDA). The results show that the reaction between Fe(III) and 2-DR is not influenced by buffer composition, by the addition of antioxidant compounds or iron chelators. This reaction consists in a methodological artifact that leads to antioxidant capacity underestimation or/and incorrect interpretation of the studied mechanisms. To correct this interference, we proposed a new assays blank based on the use of Fe(III). In chapters 2 and 3, we studied the effects of caffeic acid (CA) on Fenton and Fe(II) autoxidation reactions, respectively. Results were compared to tannic acid (TA), a polyphenol largely studied in our lab with known antioxidant activity. In both Fenton and Fe(II) autoxidation reactions, CA acted as antioxidant by inhibiting the iron-mediated 2-DR degradation, DMPO hydroxylation (only in the presence of Fenton reactants) and rat liver lipid peroxidation. The protection was dose-depedent on CA concentration and inversely correlated to iron concentration. CA performed its antioxidant activity in the micromolar range, which suggests a chelating antioxidant mechanism. Furthermore, we suggested a 1:2 Fe(II)-CA ratio that could be responsible for the inhibition of hydroxyl radical mediated oxidations. CA also presented a free radical scavenger activity by reducing ABTS radical and extending the lag phase of lipid peroxidation. Moreover, we observed that both CA and TA increased the rate of Fe(II) autoxidation reaction (by accelerating the oxygen consumption) and were able to reduce Fe(III) to Fe(II) by an inner-sphere electron transfer

    Modification of proteins by oxidation products of cholesterol: mechanisms and biological implications

    No full text
    O colesterol é um importante componente das membranas celulares em eucariotos superiores, desempenhando papéis estruturais e funcionais. O colesterol possui uma insaturação em sua estrutura sendo, portanto, alvo de oxidação mediada por espécies reativas de oxigênio e/ou nitrogênio. A oxidação não enzimática do colesterol gera, como produtos primários, os hidroperóxidos de colesterol. Tais moléculas, por sua vez, são altamente reativas e podem reagir com metais livres e/ou metaloproteínas, trazendo consequências à celula. Neste sentido, o primeiro capítulo deste trabalho tem como objetivo estudar a reação dos hidroperóxidos de colesterol (ChOOH) com o citocromo c (citc), uma heme proteína envolvida no transporte de elétrons na mitocôndria. Análises de espectroscopia no UV-Vis mostraram que o ChOOH promove o bleaching da banda Soret do citc de uma maneira dose-dependente. Mais ainda, esta reação leva à formação de radicais centrados em carbono tanto na proteína como no lipídeo, sugerindo uma redução homolítica do ChOOH. Como consequências, pode-se observar a oligomerização do citc, um processo que pode influenciar no transporte de elétrons bem como na sinalização para a apoptose. A partir da reação do citc com ChOOH podem surgir, direta ou indiretamente, outras espécies reativas, como aldeídos, cetonas e epóxidos. Dentre estas, destacam-se os aldeídos de colesterol, em particular o colesterol secoaldeído (CSec) e o carboxialdeído (ChAld), uma vez que foram encontrados elevados em placas ateroscleróticas e em tecidos cerebrais de pacientes com doenças neurodegenerativas. Tais espécies podem reagir com resíduos de aminoácidos provocando alterações estruturais e funcionais em proteínas. Neste sentido, o segundo capítulo deste trabalho tem como objetivo estudar a reação do ChAld com citc. Usando modelos mimétivos de membrana e espectrometria de massas, foi mostrado que o ChAld modifica covalentemente o citc por um mecanismo consistente com a formação de bases de Schiff. Tal modificação ocorre preferencialmente em resíduos de lisina que interagem com a membrana. Estas modificações influenciam na afinidade do citc pela membrana, aumentando sua aderência, o que pode ter influência no transporte de elétrons e sinalização para a apoptose. No terceiro e último capítulo deste trabalho nós buscamos uma ferramente analítica que permitisse analisar modificação de proteínas promovidas por produtos de oxidação de colesterol e outros esteróis. Em um estudo realizado em colaboração com o grupo do professor Porter na Universidade de Vanderbilt, utilizamos ensaios baseados em click chemistry para buscar proteínas modificadas. Para isso, foram sintetizados derivados de colesterol e 7-deidrocolesterol (7-DHC, precursor imediato do colesterol) contendo um grupo alquinil na sua cadeia lateral. Este grupo pode ser ligado a um grupo azida por meio de uma reação de cicloadição, em um processo conhecido como click chemistry. Após a síntese e caracterização dos derivados lipídicos contendo o grupo alquinil na cadeia lateral, células Neuro2a foram tratadas com o alquinil-7-DHC e o alquinil-colesterol para averiguar seu metabolismo. Análises por HPLC-MS/MS mostraram que ambos derivados contendo o grupo alquinil foram metabolisados e convertdos nos respectivos ésteres. Usando um modelo celular para a doença conhecida como Sindrome de Smith-Lemli-Opitz (SLOS), doença caracterizada pela deficiência na enzima 7-deidrocolesterol redutase, foi mostrado que o acúmulo característico de 7-DHC nos pacientes pode levar a uma maior modificação de proteínas promovidas por seus derivados, o que pode contribuir para o desenvolvimento da doença.Cholesterol is an important component of eukaryotic cellular membranes, where it has an influence in the fluidity and stability. Due to the presence of a double bond in its structure, cholesterol can be oxidized by reactive oxygen and nitrogen species. This non-enzymatic oxidation generates, as primary products, cholesterol hydroperoxides. Such molecules, in turn, are highly reactive and can react with free metal ions and/or metalloproteins, affecting cell metabolism. Therefore, the first chapter of the present study aims to investigate the reaction of cholesterol hydroperoxides (ChOOH) with cytochrome c (cytc), a heme protein involved in the mitochondrial electron transport. Spectroscopic analyses in the UV-Vis region showed that ChOOH induces a dose-dependent bleaching of cytc\'s Soret band. In addition, this reaction leads to the formation of carbon-centered radicals on both protein and lipid, suggesting a homolytic reduction of ChOOH. As consequences, cytc undergoes oligomerization, a process that can influence electron transport and apoptosis signaling. The reaction of cytc and ChOOH can produce, directly or indirectly, reactive species such as epoxides, aldehydes and ketones. Among them, cholesterol aldehydes, such as cholesterol secoaldehyde (CSec) and cholesterol carboxyaldehyde (ChAld), are of particular interest, since they were previously found elevated in atherosclerotic plaques and brain tissue of patients bearing neurodegenerative diseases. These species can also react with amino acid residues leading to protein denaturation and malfunction. With that in mind, the second chapter of this study aims to investigate the reaction of ChAld and cytc. Using mimetic membrane models and mass spectrometry analyses, we showed that ChAld covalently modifies cytc through a mechanism consistent with the formation of Schiff base adducts. Such modification occurs mostly at lysine residues that are known to interact with the membrane. The modifications have an influence in the affinity of cytc to the membrane, where they increase its binding to the membrane, a process that could affect the electron transport and apoptosis signaling. In the last and third chapter of this study we wanted an analytical tool that allowed the investigation of protein adduction promoted by cholesterol and other sterols-derived oxidation products. In a study performed in collaboration with the Porter group from Vanderbilt University, we used analyses based on click chemistry to search for protein adduction. To address that, we first synthesized derivatives of cholesterol and 7-dehydrocholesterol (7-DHC, the immediate precursor of cholesterol) containing an alkynyl group in the side chain. The alkynyl group can be ligated to an azide group through a cycloaddition reaction, in a process known as click chemistry. After the synthesis and characterization of alkynyl derivatives, Neuro2a cells were treated with alkynyl-7-DHC and alkynyl-cholesterol to check their metabolism. HPLC-MS/MS analyses showed that both alkynyl derivatives are metabolized and converted into their respective esters. In addition, using a cell model for Smith-Lemli-Optiz Syndrome (SLOS), a disease characterized by the deficiency in the dehydrocholesterol reductase 7, we showed that the characteristic accumulation of 7-DHC in SLOS patients might be associated with protein adduction promoted by its oxidation products, which might contribute to the development of the disease

    Ferroptosis: A Promising Therapeutic Target for Neonatal Hypoxic-Ischemic Brain Injury

    No full text
    Ferroptosis is a type of programmed cell death caused by phospholipid peroxidation that has been implicated as a mechanism in several diseases resulting from ischemic-reperfusion injury. Most recently, ferroptosis has been identified as a possible key injury mechanism in neonatal hypoxic-ischemic brain injury (HIBI). This review summarizes the current literature regarding the different ferroptotic pathways, how they may be activated after neonatal HIBI, and which current or investigative interventions may attenuate ferroptotic cell death associated with neonatal HIBI

    Neonatal Hypoxic-Ischemic Brain Injury Alters Brain Acylcarnitine Levels in a Mouse Model

    No full text
    Hypoxic-ischemic brain injury (HIBI) leads to depletion of ATP, mitochondrial dysfunction, and enhanced oxidant formation. Measurement of acylcarnitines may provide insight into mitochondrial dysfunction. Plasma acylcarnitine levels are altered in neonates after an HIBI, but individual acylcarnitine levels in the brain have not been evaluated. Additionally, it is unknown if plasma acylcarnitines reflect brain acylcarnitine changes. In this study, postnatal day 9 CD1 mouse pups were randomized to HIBI induced by carotid artery ligation, followed by 30 min at 8% oxygen, or to sham surgery and normoxia, with subgroups for tissue collection at 30 min, 24 h, or 72 h after injury (12 animals/group). Plasma, liver, muscle, and brain (dissected into the cortex, cerebellum, and striatum/thalamus) tissues were collected for acylcarnitine analysis by LC-MS. At 30 min after HIBI, acylcarnitine levels were significantly increased, but the differences resolved by 24 h. Palmitoylcarnitine was increased in the cortex, muscle, and plasma, and stearoylcarnitine in the cortex, striatum/thalamus, and cerebellum. Other acylcarnitines were elevated only in the muscle and plasma. In conclusion, although plasma acylcarnitine results in this study mimic those seen previously in humans, our data suggest that the plasma acylcarnitine profile was more reflective of muscle changes than brain changes. Acylcarnitine metabolism may be a target for therapeutic intervention after neonatal HIBI, though the lack of change after 30 min suggests a limited therapeutic window
    corecore