103 research outputs found

    The use of MRI apparent diffusion coefficient (ADC) in monitoring the development of brain infarction

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To study the rules that apparent diffusion coefficient (ADC) changes with time and space in cerebral infarction, and to provide the evidence in defining the infarction stages.</p> <p>Methods</p> <p>117 work-ups in 98 patients with cerebral infarction (12 hyperacute, 43 acute, 29 subacute, 10 steady, and 23 chronic infarctions) were imaged with both conventional MRI and diffusion weighted imaging. The average ADC values, the relative ADC (rADC) values, and the ADC values or rADC values from the center to the periphery of the lesion were calculated.</p> <p>Results</p> <p>The average ADC values and the rADC values of hyperacute and acute infarction lesion depressed obviously. rADC values in hyperacute and acute stage was minimized, and increased progressively as time passed and appeared as "pseudonormal" values in approximately 8 to 14 days. Thereafter, rADC values became greater than normal in chronic stage. There was positive correlation between rADC values and time (P < 0.01). The ADC values and the rADC values in hyperacute and acute lesions had gradient signs that these lesions increased from the center to the periphery. The ADC values and the rADC values in subacute lesions had adverse gradient signs that these lesions decreased from the center to the periphery.</p> <p>Conclusion</p> <p>The ADC values of infarction lesions have evolution rules with time and space. The evolution rules with time and those in space can be helpful to decide the clinical stage, and to provide the evidence in guiding the treatment or judging the prognosis in infarction.</p

    The Association of AMPK with ULK1 Regulates Autophagy

    Get PDF
    Autophagy is a highly orchestrated intracellular bulk degradation process that is activated by various environmental stresses. The serine/threonine kinase ULK1, like its yeast homologue Atg1, is a key initiator of autophagy that is negatively regulated by the mTOR kinase. However, the molecular mechanism that controls the inhibitory effect of mTOR on ULK1-mediated autophagy is not fully understood. Here we identified AMPK, a central energy sensor, as a new ULK1-binding partner. We found that AMPK binds to the PS domain of ULK1 and this interaction is required for ULK1-mediated autophagy. Interestingly, activation of AMPK by AICAR induces 14-3-3 binding to the AMPK-ULK1-mTORC1 complex, which coincides with raptor Ser792 phosphorylation and mTOR inactivation. Consistently, AICAR induces autophagy in TSC2-deficient cells expressing wild-type raptor but not the mutant raptor that lacks the AMPK phosphorylation sites (Ser722 and Ser792). Taken together, these results suggest that AMPK association with ULK1 plays an important role in autophagy induction, at least in part, by phosphorylation of raptor to lift the inhibitory effect of mTOR on the ULK1 autophagic complex

    Toward Sustainable and Comprehensive Control of Schistosomiasis in China: Lessons from Sichuan

    Get PDF
    Triggered by a fascinating publication in the New England Journal of Medicine detailing China's new multi-pronged strategy to control and eventually interrupt the transmission of Schistosoma japonicum, this PLoS Neglected Tropical Diseases Debate critically examines the generalizability and financial costs of the studies presented from the marshlands of the lake region. Edmund Seto from the University of California and colleagues emphasize that the epidemiology and control of schistosomiasis varies according to the social-ecological context. They conjecture that the successful intervention packages piloted in the lake region is not fully fit for the hilly and mountainous environments in Sichuan and Yunnan provinces, and hence call for more flexible, setting-specific, and less expensive control strategies. In response, Xiao-Nong Zhou from the National Institute of Parasitic Diseases at the Chinese Center of Disease Control and Prevention and colleagues explain the steps from designing pilot studies to the articulation and implementation of a new national control strategy through a careful process of scaling-up and adaptations. Finally, the two opponents converge. The need for integrated, intersectoral, and setting-specific control measures is stressed, supported by rigorous surveillance and continuous research. Experiences and lessons from China are important for shaping the schistosomiasis elimination agenda

    Modeling Light Adaptation in Circadian Clock: Prediction of the Response That Stabilizes Entrainment

    Get PDF
    Periods of biological clocks are close to but often different from the rotation period of the earth. Thus, the clocks of organisms must be adjusted to synchronize with day-night cycles. The primary signal that adjusts the clocks is light. In Neurospora, light transiently up-regulates the expression of specific clock genes. This molecular response to light is called light adaptation. Does light adaptation occur in other organisms? Using published experimental data, we first estimated the time course of the up-regulation rate of gene expression by light. Intriguingly, the estimated up-regulation rate was transient during light period in mice as well as Neurospora. Next, we constructed a computational model to consider how light adaptation had an effect on the entrainment of circadian oscillation to 24-h light-dark cycles. We found that cellular oscillations are more likely to be destabilized without light adaption especially when light intensity is very high. From the present results, we predict that the instability of circadian oscillations under 24-h light-dark cycles can be experimentally observed if light adaptation is altered. We conclude that the functional consequence of light adaptation is to increase the adjustability to 24-h light-dark cycles and then adapt to fluctuating environments in nature

    Mevalonate Cascade Regulation of Airway Mesenchymal Cell Autophagy and Apoptosis: A Dual Role for p53

    Get PDF
    Statins inhibit the proximal steps of cholesterol biosynthesis, and are linked to health benefits in various conditions, including cancer and lung disease. We have previously investigated apoptotic pathways triggered by statins in airway mesenchymal cells, and identified reduced prenylation of small GTPases as a primary effector mechanism leading to p53-mediated cell death. Here, we extend our studies of statin-induced cell death by assessing endpoints of both apoptosis and autophagy, and investigating their interplay and coincident regulation. Using primary cultured human airway smooth muscle (HASM) and human airway fibroblasts (HAF), autophagy, and autophagosome formation and flux were assessed by transmission electron microscopy, cytochemistry (lysosome number and co-localization with LC3) and immunoblotting (LC3 lipidation and Atg12-5 complex formation). Chemical inhibition of autophagy increased simvastatin-induced caspase activation and cell death. Similarly, Atg5 silencing with shRNA, thus preventing Atg5-12 complex formation, increased pro-apoptotic effects of simvastatin. Simvastatin concomitantly increased p53-dependent expression of p53 up-regulated modulator of apoptosis (PUMA), NOXA, and damage-regulated autophagy modulator (DRAM). Notably both mevalonate cascade inhibition-induced autophagy and apoptosis were p53 dependent: simvastatin increased nuclear p53 accumulation, and both cyclic pifithrin-α and p53 shRNAi partially inhibited NOXA, PUMA expression and caspase-3/7 cleavage (apoptosis) and DRAM expression, Atg5-12 complex formation, LC3 lipidation, and autophagosome formation (autophagy). Furthermore, the autophagy response is induced rapidly, significantly delaying apoptosis, suggesting the existence of a temporally coordinated p53 regulation network. These findings are relevant for the development of statin-based therapeutic approaches in obstructive airway disease

    Helicobacter pylori infection and circulating ghrelin levels - A systematic review

    Get PDF
    BACKGROUND: The nature of the association between ghrelin, an orexigenic hormone produced mainly in the stomach, and Helicobacter pylori (H pylori), a bacterium that colonises the stomach, is still controversial. We examined available evidence to determine whether an association exists between the two; and if one exists, in what direction. METHODS: We reviewed original English language studies on humans reporting circulating ghrelin levels in H pylori infected and un-infected participants; and circulating ghrelin levels before and after H pylori eradication. Meta-analyses were conducted for eligible studies by combining study specific estimates using the inverse variance method with weighted average for continuous outcomes in a random effects model. RESULTS: Seventeen out of 27 papers that reported ghrelin levels in H pylori positive and negative subjects found lower circulating ghrelin levels in H pylori positive subjects; while 10 found no difference. A meta-analysis of 19 studies with a total of 1801 participants showed a significantly higher circulating ghrelin concentration in H pylori negative participants than in H pylori positive participants (Effect estimate (95%CI) = -0.48 (-0.60, -0.36)). However, eradicating H pylori did not have any significant effect on circulating ghrelin levels (Effect estimate (95% CI) = 0.08 (-0.33, 0.16); Test for overall effect: Z = 0.67 (P = 0.5)). CONCLUSIONS: We conclude that circulating ghrelin levels are lower in H pylori infected people compared to those not infected; but the relationship between circulating ghrelin and eradication of H pylori is more complex
    • …
    corecore